IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i2p155-d1329211.html
   My bibliography  Save this article

Study of Regional Spatial and Temporal Changes of Net Ecosystem Productivity of Crops from Remotely Sensed Data

Author

Listed:
  • Peng Wang

    (School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China)

  • Yong Xue

    (School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
    College of Engineering and Technology, University of Derby, Derby DE22 1GB, UK)

  • Zhigang Yan

    (School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China)

  • Wenping Yin

    (School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China)

  • Botao He

    (School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China)

  • Pei Li

    (School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

Net ecosystem productivity (NEP) is a crucial indicator of the carbon balance and health of an ecosystem. Until now, few studies have estimated the NEP of crops and analyzed it in space and time. The study of NEP in crops is crucial for comprehending the carbon cycle of agroecosystems and determining the status of carbon sources and sinks in farmland at the regional scale. In this study, we calculated the net primary productivity (NPP) and NEP of agricultural crops in Jiangsu Province, China, from 2001 to 2022 by using remote sensing data, land cover data and meteorological data. The modified Carnegie Ames Stanford Approach (CASA) model was employed to estimate the NPP, and the soil heterotrophic respiration model was used to calculate the soil heterotrophic respiration (R h ). Then, the availability of the NPP was evaluated. On this basis, the NEP was obtained by calculating the difference between the NPP and R h . We explored the spatial and temporal changes in the NEP of crops and analyzed the correlation between the NEP and crop cultivation activities and climatic factors under the context of agricultural production information using the NEP datasets of agricultural crops. The study indicated that (1) the NEP of crops in Jiangsu Province showed a north-to-south pattern, being higher in the north and lower in the south. Over the course of 22 years, the average NEP of the crops in Jiangsu Province stands at 163.4 gC/m 2 , highlighting a positive carbon sink performance. Nonetheless, up to 88.04% of the crops exhibited declining NEP trends. (2) The monthly fluctuations in the NEP of crops in Jiangsu Province exhibited a bimodal pattern, with peaks occurring during spring and summer. The changes in the NEP of the crops were significantly associated with various agricultural production activities. (3) Significant regional differences were observed in the NEP of the crop response to temperature and precipitation, both of which directly impacted the annual performance of the NEP. This study could serve as a reference for research on the carbon cycle in agriculture and the development of policies aimed at reducing emissions and enhancing carbon sinks in local farmland.

Suggested Citation

  • Peng Wang & Yong Xue & Zhigang Yan & Wenping Yin & Botao He & Pei Li, 2024. "Study of Regional Spatial and Temporal Changes of Net Ecosystem Productivity of Crops from Remotely Sensed Data," Land, MDPI, vol. 13(2), pages 1-20, January.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:2:p:155-:d:1329211
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/2/155/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/2/155/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sir Nicholas Stern, 2006. "What is the Economics of Climate Change?," World Economics, World Economics, 1 Ivory Square, Plantation Wharf, London, United Kingdom, SW11 3UE, vol. 7(2), pages 1-10, April.
    2. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    2. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    3. Bu, Lingduo & Chen, Xinping & Li, Shiqing & Liu, Jianliang & Zhu, Lin & Luo, Shasha & Lee Hill, Robert & Zhao, Ying, 2015. "The effect of adapting cultivars on the water use efficiency of dryland maize (Zea mays L.) in northwestern China," Agricultural Water Management, Elsevier, vol. 148(C), pages 1-9.
    4. Wenfeng Chi & Yuanyuan Zhao & Wenhui Kuang & Tao Pan & Tu Ba & Jinshen Zhao & Liang Jin & Sisi Wang, 2021. "Impact of Cropland Evolution on Soil Wind Erosion in Inner Mongolia of China," Land, MDPI, vol. 10(6), pages 1-16, June.
    5. Islam, Moinul & Kotani, Koji & Managi, Shunsuke, 2016. "Climate perception and flood mitigation cooperation: A Bangladesh case study," Economic Analysis and Policy, Elsevier, vol. 49(C), pages 117-133.
    6. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    7. Xu, Ying & Findlay, Christopher, 2019. "Farmers’ constraints, governmental support and climate change adaptation: Evidence from Guangdong Province, China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), October.
    8. Moinul Islam & Koji Kotani, 2014. "Perceptions to climatic changes and cooperative attitudes toward flood protection in Bangladesh," Working Papers EMS_2014_10, Research Institute, International University of Japan.
    9. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    10. Yuhong Shuai & Liming Yao, 2021. "Adjustable Robust Optimization for Multi-Period Water Allocation in Droughts Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4043-4065, September.
    11. Jean Charles Hourcade & Michel Aglietta & Baptiste Perrissin-Fabert, 2014. "Transition to a Low-Carbon society and sustainable economic recovery, a monetary-based financial device," Post-Print hal-01692593, HAL.
    12. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    13. E. Carina H. Keskitalo & Sirkku Juhola & Lisa Westerhoff, 2012. "Climate change as governmentality: technologies of government for adaptation in three European countries," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 55(4), pages 435-452, July.
    14. Chen, Qi & Qu, Zhaoming & Ma, Guohua & Wang, Wenjing & Dai, Jiaying & Zhang, Min & Wei, Zhanbo & Liu, Zhiguang, 2022. "Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions," Agricultural Water Management, Elsevier, vol. 263(C).
    15. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    16. Jonathan Portes & Simon Wren-Lewis, 2015. "Issues in the Design of Fiscal Policy Rules," Manchester School, University of Manchester, vol. 83, pages 56-86, September.
    17. Zhihai Yang & Amin W. Mugera & Fan Zhang, 2016. "Investigating Yield Variability and Inefficiency in Rice Production: A Case Study in Central China," Sustainability, MDPI, vol. 8(8), pages 1-11, August.
    18. Banister, David, 2011. "Cities, mobility and climate change," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1538-1546.
    19. Caroline Ignell & Peter Davies & Cecilia Lundholm, 2013. "Swedish Upper Secondary School Students’ Conceptions of Negative Environmental Impact and Pricing," Sustainability, MDPI, vol. 5(3), pages 1-15, March.
    20. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:2:p:155-:d:1329211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.