IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i4p819-d1115198.html
   My bibliography  Save this article

Combining Digital Covariates and Machine Learning Models to Predict the Spatial Variation of Soil Cation Exchange Capacity

Author

Listed:
  • Fuat Kaya

    (Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Isparta University of Applied Sciences, Isparta 32260, Türkiye)

  • Gaurav Mishra

    (Centre of Excellence on Sustainable Land Management, Indian Council of Forestry Research and Education, Dehradun 248006, Uttarakhand, India)

  • Rosa Francaviglia

    (Research Centre for Agriculture and Environment, Council for Agricultural Research and Economics, 00184 Rome, Italy)

  • Ali Keshavarzi

    (Laboratory of Remote Sensing and GIS, Department of Soil Science, University of Tehran, P.O. Box 4111, Karaj 31587-77871, Iran)

Abstract

Cation exchange capacity (CEC) is a soil property that significantly determines nutrient availability and effectiveness of fertilizer applied in lands under different managements. CEC’s accurate and high-resolution spatial information is needed for the sustainability of agricultural management on farms in the Nagaland state (northeast India) which are fragmented and intertwined with the forest ecosystem. The current study applied the digital soil mapping (DSM) methodology, based on the CEC values determined in soil samples obtained from 305 points in the region, which is mountainous and difficult to access. Firstly, digital auxiliary data were obtained from three open-access sources, including indices generated from the time series Landsat 8 OLI satellite, topographic variables derived from a digital elevation model (DEM), and the WorldClim dataset. Furthermore, the CEC values and the auxiliary were used data to model Lasso regression (LR), stochastic gradient boosting (GBM), support vector regression (SVR), random forest (RF), and K-nearest neighbors (KNN) machine learning (ML) algorithms were systematically compared in the R-Core Environment Program. Model performance were evaluated with the square root mean error (RMSE), determination coefficient (R 2 ), and mean absolute error (MAE) of 10-fold cross-validation (CV). The lowest RMSE was obtained by the RF algorithm with 4.12 cmol c kg −1 , while the others were in the following order: SVR (4.27 cmol c kg −1 )

Suggested Citation

  • Fuat Kaya & Gaurav Mishra & Rosa Francaviglia & Ali Keshavarzi, 2023. "Combining Digital Covariates and Machine Learning Models to Predict the Spatial Variation of Soil Cation Exchange Capacity," Land, MDPI, vol. 12(4), pages 1-20, April.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:4:p:819-:d:1115198
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/4/819/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/4/819/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    2. Gaurav Mishra & Rosa Francaviglia, 2021. "Land Uses, Altitude and Texture Effects on Soil Parameters. A Comparative Study in Two Districts of Nagaland, Northeast India," Agriculture, MDPI, vol. 11(2), pages 1-13, February.
    3. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    4. Gérard Biau & Erwan Scornet, 2016. "A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 197-227, June.
    5. Tomislav Hengl & Gerard B M Heuvelink & Bas Kempen & Johan G B Leenaars & Markus G Walsh & Keith D Shepherd & Andrew Sila & Robert A MacMillan & Jorge Mendes de Jesus & Lulseged Tamene & Jérôme E Tond, 2015. "Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-26, June.
    6. Gerald Forkuor & Ozias K L Hounkpatin & Gerhard Welp & Michael Thiel, 2017. "High Resolution Mapping of Soil Properties Using Remote Sensing Variables in South-Western Burkina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-21, January.
    7. Gérard Biau & Erwan Scornet, 2016. "Rejoinder on: A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 264-268, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Banafshe Parizad & Hassan Ranjbarzadeh & Ali Jamali & Hamid Khayyam, 2024. "An Intelligent Hybrid Machine Learning Model for Sustainable Forecasting of Home Energy Demand and Electricity Price," Sustainability, MDPI, vol. 16(6), pages 1-17, March.
    2. Andree,Bo Pieter Johannes & Chamorro Elizondo,Andres Fernando & Kraay,Aart C. & Spencer,Phoebe Girouard & Wang,Dieter, 2020. "Predicting Food Crises," Policy Research Working Paper Series 9412, The World Bank.
    3. Blanquero, Rafael & Carrizosa, Emilio & Molero-Río, Cristina & Morales, Dolores Romero, 2022. "On sparse optimal regression trees," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1045-1054.
    4. Emilio Carrizosa & Cristina Molero-Río & Dolores Romero Morales, 2021. "Mathematical optimization in classification and regression trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 5-33, April.
    5. Amin, Modhurima Dey & Badruddoza, Syed & McCluskey, Jill J., 2021. "Predicting access to healthful food retailers with machine learning," Food Policy, Elsevier, vol. 99(C).
    6. Notz, Pascal M. & Pibernik, Richard, 2024. "Explainable subgradient tree boosting for prescriptive analytics in operations management," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1119-1133.
    7. Hou, Lei & Elsworth, Derek & Zhang, Fengshou & Wang, Zhiyuan & Zhang, Jianbo, 2023. "Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models," Energy, Elsevier, vol. 264(C).
    8. Ma, Zhikai & Huo, Qian & Wang, Wei & Zhang, Tao, 2023. "Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain," Energy, Elsevier, vol. 278(C).
    9. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    10. Jie Shi & Arno P. J. M. Siebes & Siamak Mehrkanoon, 2023. "TransCORALNet: A Two-Stream Transformer CORAL Networks for Supply Chain Credit Assessment Cold Start," Papers 2311.18749, arXiv.org.
    11. Bourdouxhe, Axel & Wibail, Lionel & Claessens, Hugues & Dufrêne, Marc, 2023. "Modeling potential natural vegetation: A new light on an old concept to guide nature conservation in fragmented and degraded landscapes," Ecological Modelling, Elsevier, vol. 481(C).
    12. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    13. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    14. Yiyi Huo & Yingying Fan & Fang Han, 2023. "On the adaptation of causal forests to manifold data," Papers 2311.16486, arXiv.org, revised Dec 2023.
    15. Akshita Bassi & Aditya Manchanda & Rajwinder Singh & Mahesh Patel, 2023. "A comparative study of machine learning algorithms for the prediction of compressive strength of rice husk ash-based concrete," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 209-238, August.
    16. Sachin Kumar & Zairu Nisha & Jagvinder Singh & Anuj Kumar Sharma, 2022. "Sensor network driven novel hybrid model based on feature selection and SVR to predict indoor temperature for energy consumption optimisation in smart buildings," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 3048-3061, December.
    17. Yong-Chao Su & Cheng-Yu Wu & Cheng-Hong Yang & Bo-Sheng Li & Sin-Hua Moi & Yu-Da Lin, 2021. "Machine Learning Data Imputation and Prediction of Foraging Group Size in a Kleptoparasitic Spider," Mathematics, MDPI, vol. 9(4), pages 1-16, February.
    18. Diogenis A. Kiziridis & Anna Mastrogianni & Magdalini Pleniou & Elpida Karadimou & Spyros Tsiftsis & Fotios Xystrakis & Ioannis Tsiripidis, 2022. "Acceleration and Relocation of Abandonment in a Mediterranean Mountainous Landscape: Drivers, Consequences, and Management Implications," Land, MDPI, vol. 11(3), pages 1-23, March.
    19. Escribano, Álvaro & Wang, Dandan, 2021. "Mixed random forest, cointegration, and forecasting gasoline prices," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1442-1462.
    20. Hunish Bansal & Basavraj Chinagundi & Prashant Singh Rana & Neeraj Kumar, 2022. "An Ensemble Machine Learning Technique for Detection of Abnormalities in Knee Movement Sustainability," Sustainability, MDPI, vol. 14(20), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:4:p:819-:d:1115198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.