IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i3p639-d1091142.html
   My bibliography  Save this article

Study on Soil Erosion Driving Forces by Using (R)USLE Framework and Machine Learning: A Case Study in Southwest China

Author

Listed:
  • Yuankai Ge

    (School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454150, China
    Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China)

  • Longlong Zhao

    (Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China)

  • Jinsong Chen

    (Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
    Shenzhen Engineering Laboratory of Ocean Environmental Big Data Analysis and Application, Shenzhen 518055, China)

  • Xiaoli Li

    (Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China)

  • Hongzhong Li

    (Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China)

  • Zhengxin Wang

    (Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China)

  • Yanni Ren

    (Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China)

Abstract

Soil erosion often leads to land degradation, agricultural production reduction, and environmental deterioration, which seriously restricts the sustainable development of regions. Clarifying the driving factors of soil erosion is the premise of preventing soil erosion. Given the lack of current research on the driving factors/force changes of soil erosion in different regions or under different erosion intensity grades, this paper pioneered to use machine learning methods to address this problem. Firstly, the widely used (Revised) Universal Soil Loss Equation ((R)USLE) framework was applied to simulate the spatial distribution of soil erosion. Then, the K-fold algorithm was used to evaluate the accuracy and stability of five machine learning algorithms for fitting soil erosion. The random forest (RF) method performed best, with average accuracy reaching 86.35%. Then, the Permutation Importance (PI) and the Partial Dependence Plot (PDP) methods based on RF were introduced to quantitatively analyze the main driving factors under different geological conditions and the driving force changes of each factor under different erosion intensity grades, respectively. Results showed that the main drivers of soil erosion in Chongqing and Guizhou were cover management factors (PI: 0.4672, 0.4788), while that in Sichuan was slope length and slope factor (PI: 0.6165). Under different erosion intensity grades, the driving force of each factor shows nonlinear and complex inhibitory or promoting effects with factor value changing. These findings can provide scientific guidance for the refined management of soil erosion, which is significant for halting or reversing land degradation and achieving sustainable use of land resources.

Suggested Citation

  • Yuankai Ge & Longlong Zhao & Jinsong Chen & Xiaoli Li & Hongzhong Li & Zhengxin Wang & Yanni Ren, 2023. "Study on Soil Erosion Driving Forces by Using (R)USLE Framework and Machine Learning: A Case Study in Southwest China," Land, MDPI, vol. 12(3), pages 1-20, March.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:3:p:639-:d:1091142
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/3/639/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/3/639/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yonghua Zhao & Li Liu & Shuaizhi Kang & Yong Ao & Lei Han & Chaoqun Ma, 2021. "Quantitative Analysis of Factors Influencing Spatial Distribution of Soil Erosion Based on Geo-Detector Model under Diverse Geomorphological Types," Land, MDPI, vol. 10(6), pages 1-17, June.
    2. United Nations UN, 2015. "Transforming our World: the 2030 Agenda for Sustainable Development," Working Papers id:7559, eSocialSciences.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paulina Schiappacasse & Bernhard Müller & Le Thuy Linh, 2019. "Towards Responsible Aggregate Mining in Vietnam," Resources, MDPI, vol. 8(3), pages 1-15, August.
    2. Pina Puntillo, 2023. "Circular economy business models: Towards achieving sustainable development goals in the waste management sector—Empirical evidence and theoretical implications," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(2), pages 941-954, March.
    3. Xu Yang & Xuan Zou & Xueqi Liu & Qixuan Li & Siqian Zou & Ming Li, 2023. "The Spatiotemporal Pattern and Driving Mechanism of Urban Sprawl in China’s Counties," Land, MDPI, vol. 12(3), pages 1-16, March.
    4. R. Ebrahimi & S. Choobchian & H. Farhadian & I. Goli & E. Farmandeh & H. Azadi, 2022. "Investigating the effect of vocational education and training on rural women’s empowerment," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-11, December.
    5. Lampros Lamprinidis, 2025. "Socially Responsible Public Procurement and the Social Economy: European and Global Institutional Approaches," Journal of Public Policy and Administration, IPRJB, vol. 10(1), pages 46-62.
    6. Bárbara Galleli & Elder Semprebon & Joyce Aparecida Ramos dos Santos & Noah Emanuel Brito Teles & Mateus Santos de Freitas-Martins & Raquel Teodoro da Silva Onevetch, 2021. "Institutional Pressures, Sustainable Development Goals and COVID-19: How Are Organisations Engaging?," Sustainability, MDPI, vol. 13(21), pages 1-21, November.
    7. Sagarika Dey & Priyanka Devi, 2019. "Impact of TVET on Labour Market Outcomes and Women’s Empowerment in Rural Areas: A Case Study from Cachar District, Assam," Indian Journal of Human Development, , vol. 13(3), pages 357-371, December.
    8. Maria Sassi, 2020. "A SEM Approach to the Direct and Indirect Links between WaSH Services and Access to Food in Countries in Protracted Crises: The Case of Western Bahr-el-Ghazal State, South Sudan," Sustainability, MDPI, vol. 12(22), pages 1-13, November.
    9. Olga Stepanova & Magdalena Romanov, 2021. "Urban Planning as a Strategy to Implement Social Sustainability Policy Goals? The Case of Temporary Housing for Immigrants in Gothenburg, Sweden," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    10. Michel, Hanno, 2020. "From local to global: The role of knowledge, transfer, and capacity building for successful energy transitions," Discussion Papers, Research Group Digital Mobility and Social Differentiation SP III 2020-603, WZB Berlin Social Science Center.
    11. Hervé Corvellec & Johan Hultman & Anne Jerneck & Susanne Arvidsson & Johan Ekroos & Niklas Wahlberg & Timothy W. Luke, 2021. "Resourcification: A non‐essentialist theory of resources for sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(6), pages 1249-1256, November.
    12. Wilson Charles Wilson & Maja Slingerland & Frederick P. Baijukya & Hannah Zanten & Simon Oosting & Ken E. Giller, 2021. "Integrating the soybean-maize-chicken value chains to attain nutritious diets in Tanzania," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(6), pages 1595-1612, December.
    13. Jones, Lindsey & d'Errico, Marco, 2019. "Whose resilience matters? Like-for-like comparison of objective and subjective evaluations of resilience," World Development, Elsevier, vol. 124(C), pages 1-1.
    14. Bin Xue & Bingsheng Liu & Tao Liang & Dong Zhao & Tao Wang & Xingbin Chen, 2022. "A heterogeneous decision criteria system evaluating sustainable infrastructure development: From the lens of multidisciplinary stakeholder engagement," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(4), pages 556-579, August.
    15. Sudheesh Ramapurath Chemmencheri, 2016. "Social Protection as a Human Right in South Asia," Indian Journal of Human Development, , vol. 10(2), pages 236-252, August.
    16. Ingrid Boas & Frank Biermann & Norichika Kanie, 2016. "Cross-sectoral strategies in global sustainability governance: towards a nexus approach," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 16(3), pages 449-464, June.
    17. Joyeeta Gupta & Louis Lebel, 0. "Access and allocation in earth system governance: lessons learnt in the context of the Sustainable Development Goals," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 0, pages 1-18.
    18. Guo, Jiaqi & Wang, Qiang & Li, Rongrong, 2024. "Can official development assistance promote renewable energy in sub-Saharan Africa countries? A matter of institutional transparency of recipient countries," Energy Policy, Elsevier, vol. 186(C).
    19. Kinyondo, Abel Alfred & Ntegwa, Magashi Joseph & Masawe, Cresencia Apolinary, 2022. "Socioeconomic Inequality in Maternal Healthcare Services: The Case of Tanzania," African Journal of Economic Review, African Journal of Economic Review, vol. 10(01), January.
    20. Francesco Bandarin & Enrico Ciciotti & Marco Cremaschi & Giovanna Madera & Paolo Perulli & Diana Shendrikova, 2020. "Which Future for Cities after COVID-19 An international Survey," Reports, Fondazione Eni Enrico Mattei, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:3:p:639-:d:1091142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.