IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i6p604-d569892.html
   My bibliography  Save this article

Quantitative Analysis of Factors Influencing Spatial Distribution of Soil Erosion Based on Geo-Detector Model under Diverse Geomorphological Types

Author

Listed:
  • Yonghua Zhao

    (The School of Land Engineering, Shaanxi Key Laboratory of Land Consolidation, Key Laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Natural and Resources, Chang’an University, Xi’an 710054, China)

  • Li Liu

    (The School of Land Engineering, Shaanxi Key Laboratory of Land Consolidation, Key Laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Natural and Resources, Chang’an University, Xi’an 710054, China)

  • Shuaizhi Kang

    (The School of Land Engineering, Shaanxi Key Laboratory of Land Consolidation, Key Laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Natural and Resources, Chang’an University, Xi’an 710054, China)

  • Yong Ao

    (The School of Land Engineering, Shaanxi Key Laboratory of Land Consolidation, Key Laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Natural and Resources, Chang’an University, Xi’an 710054, China)

  • Lei Han

    (The School of Land Engineering, Shaanxi Key Laboratory of Land Consolidation, Key Laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Natural and Resources, Chang’an University, Xi’an 710054, China)

  • Chaoqun Ma

    (The School of Land Engineering, Shaanxi Key Laboratory of Land Consolidation, Key Laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Natural and Resources, Chang’an University, Xi’an 710054, China)

Abstract

The Loess Plateau of China suffers from severe erosion, which results in a great variety of economic and ecological problems. For scientific control of soil erosion, the key questions urgently to be addressed in this paper are: (1) Which are the driving factors under diverse geomorphological types? (2) Do these driving factors operate independently or by interacting? (3) Which zones under diverse geomorphological types suffer from severe erosion and need more attention? In this paper, the RUSLE model was applied here to demonstrate the spatio-temporal variations in soil erosion from 2010 to 2017 in Yan’an City, and the Geo-detector model proved to be a useful tool to solve the questions mentioned above. The results showed that the average erosion modulus in Yan’an City decreased by 1927.36 t/km 2 ·a from 2010 to 2017. The intensity of soil erosion in the northern Baota District, central Ganquan County, Luochuan County, Ansai County, and Zhidan County decreased to varying degrees. The effect size of driving factors affecting soil erosion varied significantly in diverse geomorphological types. The effect size of interaction between land-use types and vegetation coverage, land-use types and slope, slope and precipitation was higher than that of a single factor. High-risk zones with severe erosion were closer to cultivated land and forest land with steep slopes (>25°) in the mid-elevation hills of Yan’an City. Additionally, based on the specificity of the study area, the Geo-detector model performed better in a relatively flat region, and factors with macroscopic spatial distributions weaken its explanatory power on soil erosion on a regional scale. Based on data selection, data of different accuracy sparked the issue of “data coupling”, which led to the enormous deviation of model results in mid-elevation plains. Results from our analysis provide insights for a more ecologically sound development of Yan’an City and provide references for the scientific use of the Geo-detector model.

Suggested Citation

  • Yonghua Zhao & Li Liu & Shuaizhi Kang & Yong Ao & Lei Han & Chaoqun Ma, 2021. "Quantitative Analysis of Factors Influencing Spatial Distribution of Soil Erosion Based on Geo-Detector Model under Diverse Geomorphological Types," Land, MDPI, vol. 10(6), pages 1-17, June.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:6:p:604-:d:569892
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/6/604/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/6/604/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yao, Xiaolei & Yu, Jingshan & Jiang, Hong & Sun, Wenchao & Li, Zhanjie, 2016. "Roles of soil erodibility, rainfall erosivity and land use in affecting soil erosion at the basin scale," Agricultural Water Management, Elsevier, vol. 174(C), pages 82-92.
    2. Dlamini, P. & Orchard, C. & Jewitt, G. & Lorentz, S. & Titshall, L. & Chaplot, V., 2011. "Controlling factors of sheet erosion under degraded grasslands in the sloping lands of KwaZulu-Natal, South Africa," Agricultural Water Management, Elsevier, vol. 98(11), pages 1711-1718, September.
    3. Liu, Yansui, 2018. "Introduction to land use and rural sustainability in China," Land Use Policy, Elsevier, vol. 74(C), pages 1-4.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu Yang & Xuan Zou & Xueqi Liu & Qixuan Li & Siqian Zou & Ming Li, 2023. "The Spatiotemporal Pattern and Driving Mechanism of Urban Sprawl in China’s Counties," Land, MDPI, vol. 12(3), pages 1-16, March.
    2. Chao Yang & Jianrong Fan & Jiali Liu & Fubao Xu & Xiyu Zhang, 2021. "Evaluating the Dominant Controls of Water Erosion in Three Dry Valley Types Using the RUSLE and Geodetector Method," Land, MDPI, vol. 10(12), pages 1-16, November.
    3. Maomao Zhang & Abdulla-Al Kafy & Bing Ren & Yanwei Zhang & Shukui Tan & Jianxing Li, 2022. "Application of the Optimal Parameter Geographic Detector Model in the Identification of Influencing Factors of Ecological Quality in Guangzhou, China," Land, MDPI, vol. 11(8), pages 1-20, August.
    4. Jingya Tang & Lichun Sui, 2022. "Geodetector-Based Livability Analysis of Potential Resettlement Locations for Villages in Coal Mining Areas on the Loess Plateau of China," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    5. Shixian Xu & Xinjun Wang & Xiaofei Ma & Shenghan Gao, 2023. "Risk Assessment and Prediction of Soil Water Erosion on the Middle Northern Slope of Tianshan Mountain," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
    6. Guoyi Cui & Yan Zhang & Feihang Shi & Wenxia Jia & Bohua Pan & Changkun Han & Zhengze Liu & Min Li & Haohao Zhou, 2022. "Study of Spatiotemporal Changes and Driving Factors of Habitat Quality: A Case Study of the Agro-Pastoral Ecotone in Northern Shaanxi, China," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
    7. Yuankai Ge & Longlong Zhao & Jinsong Chen & Xiaoli Li & Hongzhong Li & Zhengxin Wang & Yanni Ren, 2023. "Study on Soil Erosion Driving Forces by Using (R)USLE Framework and Machine Learning: A Case Study in Southwest China," Land, MDPI, vol. 12(3), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Pengyan & Yang, Dan & Qin, Mingzhou & Jing, Wenlong, 2020. "Spatial heterogeneity analysis and driving forces exploring of built-up land development intensity in Chinese prefecture-level cities and implications for future Urban Land intensive use," Land Use Policy, Elsevier, vol. 99(C).
    2. Jianglin Lu & Keqiang Wang & Hongmei Liu, 2022. "Residents’ Selection Behavior of Compensation Schemes for Construction Land Reduction: Empirical Evidence from Questionnaires in Shanghai, China," Land, MDPI, vol. 12(1), pages 1-29, December.
    3. Lü, Da & Gao, Guangyao & Lü, Yihe & Xiao, Feiyan & Fu, Bojie, 2020. "Detailed land use transition quantification matters for smart land management in drylands: An in-depth analysis in Northwest China," Land Use Policy, Elsevier, vol. 90(C).
    4. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    5. Qiu, Bingwen & Li, Haiwen & Tang, Zhenghong & Chen, Chongcheng & Berry, Joe, 2020. "How cropland losses shaped by unbalanced urbanization process?," Land Use Policy, Elsevier, vol. 96(C).
    6. Weijia Chen & Yongquan Lu & Guilin Liu, 2022. "Balancing cropland gain and desert vegetation loss: The key to rural revitalization in Xinjiang, China," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1122-1145, September.
    7. Wang, Bo & Li, Fan & Feng, Shuyi & Shen, Tong, 2020. "Transfer of development rights, farmland preservation, and economic growth: a case study of Chongqing’s land quotas trading program," Land Use Policy, Elsevier, vol. 95(C).
    8. Chi, Yuan & Liu, Dahai & Wang, Jing & Wang, Enkang, 2020. "Human negative, positive, and net influences on an estuarine area with intensive human activity based on land covers and ecological indices: An empirical study in Chongming Island, China," Land Use Policy, Elsevier, vol. 99(C).
    9. Xinhui Feng & Yan Li & Lu Zhang & Chuyu Xia & Er Yu & Jiayu Yang, 2022. "Carbon Metabolism in Urban “Production–Living–Ecological” Space Based on Ecological Network Analysis," Land, MDPI, vol. 11(9), pages 1-22, August.
    10. Xu, Tingting & Gao, Jay & Li, Yuhua, 2019. "Machine learning-assisted evaluation of land use policies and plans in a rapidly urbanizing district in Chongqing, China," Land Use Policy, Elsevier, vol. 87(C).
    11. Mander, Myles & Jewitt, Graham & Dini, John & Glenday, Julia & Blignaut, James & Hughes, Catherine & Marais, Christo & Maze, Kristal & van der Waal, Benjamin & Mills, Anthony, 2017. "Modelling potential hydrological returns from investing in ecological infrastructure: Case studies from the Baviaanskloof-Tsitsikamma and uMngeni catchments, South Africa," Ecosystem Services, Elsevier, vol. 27(PB), pages 261-271.
    12. Yin, Xu & Wang, Jing & Li, Yurui & Feng, Zhiming & Wang, Qianyi, 2021. "Are small towns really inefficient? A data envelopment analysis of sampled towns in Jiangsu province, China," Land Use Policy, Elsevier, vol. 109(C).
    13. Lili Guo & Yuting Song & Mengqian Tang & Jinyang Tang & Bright Senyo Dogbe & Mengying Su & Houjian Li, 2022. "Assessing the Relationship among Land Transfer, Fertilizer Usage, and PM 2.5 Pollution: Evidence from Rural China," IJERPH, MDPI, vol. 19(14), pages 1-18, July.
    14. Liu, Yansui & Zhou, Yang, 2021. "Territory spatial planning and national governance system in China," Land Use Policy, Elsevier, vol. 102(C).
    15. Antonín Vaishar & Milada Šťastná, 2019. "Sustainable Development of a Peripheral Mountain Region on the State Border: Case Study of Moravské Kopanice Microregion (Moravia)," Sustainability, MDPI, vol. 11(19), pages 1-15, October.
    16. Pai Wang & Mengna Qi & Yajia Liang & Xuebing Ling & Yan Song, 2019. "Examining the Relationship between Environmentally Friendly Land Use and Rural Revitalization Using a Coupling Analysis: A Case Study of Hainan Province, China," Sustainability, MDPI, vol. 11(22), pages 1-19, November.
    17. Xinxin Fu & Xiaofeng Wang & Jitao Zhou & Jiahao Ma, 2021. "Optimizing the Production-Living-Ecological Space for Reducing the Ecosystem Services Deficit," Land, MDPI, vol. 10(10), pages 1-17, September.
    18. Yu, Zhenning & She, Shuoqi & Xia, Chuyu & Luo, Jiaojiao, 2023. "How to solve the dilemma of China’s land fallow policy: Application of voluntary bidding mode in the Yangtze River Delta of China," Land Use Policy, Elsevier, vol. 125(C).
    19. Xia, Min & Zhang, Yanyuan & Zhang, Zihong & Liu, Jingjie & Ou, Weixin & Zou, Wei, 2020. "Modeling agricultural land use change in a rapid urbanizing town: Linking the decisions of government, peasant households and enterprises," Land Use Policy, Elsevier, vol. 90(C).
    20. Zehua Wang & Fachao Liang & Sheng-Hau Lin, 2023. "Can socially sustainable development be achieved through homestead withdrawal? A hybrid multiple-attributes decision analysis," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:6:p:604-:d:569892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.