IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v174y2016icp82-92.html
   My bibliography  Save this article

Roles of soil erodibility, rainfall erosivity and land use in affecting soil erosion at the basin scale

Author

Listed:
  • Yao, Xiaolei
  • Yu, Jingshan
  • Jiang, Hong
  • Sun, Wenchao
  • Li, Zhanjie

Abstract

Evaluation of the factors affecting soil erosion is the foundation of erosion control. This study analyzed the temporal and spatial patterns of soil erosion, rainfall erosivity and land use change from 1980 to 2010. Also investigated the role of modified rainfall erosivity (RQ), land use (C), soil erodibility (K), on soil erosion in the Lushi Basin, using a multiple linear regression equation with the Soil Water Assessment Tool. The RQ spatial distribution is basically identical with rainfall. The forest and farmland from 1980 to 1995 and from 1995 to 2010 both increased. The erosion prone soil type with high K value distributes near the river. Soil erosion of whole basin had a decrease trend from 1982 to 1997, but increased in mid- and downstream regions by simulation. Through regression analysis, the considerable effect of K has been proved. Especially from July to October, the average effect of K is (1.4) larger than RQ (0.7). In the months with general rainfall amount, the average effect of RQ and K are 0.67 and 0.42 respectively. Although C factor in this basin has low sensitivity, the effect of land use on erosion cannot be ignored. These results confirm that soil erosion is driven principally by RQ and affected considerably by K, especially during the rainy season. In this basin, conservation of water and soil should both consider soil type pattern and land use adjustment on the regional scale.

Suggested Citation

  • Yao, Xiaolei & Yu, Jingshan & Jiang, Hong & Sun, Wenchao & Li, Zhanjie, 2016. "Roles of soil erodibility, rainfall erosivity and land use in affecting soil erosion at the basin scale," Agricultural Water Management, Elsevier, vol. 174(C), pages 82-92.
  • Handle: RePEc:eee:agiwat:v:174:y:2016:i:c:p:82-92
    DOI: 10.1016/j.agwat.2016.04.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416301044
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.04.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lam, Q.D. & Schmalz, B. & Fohrer, N., 2010. "Modelling point and diffuse source pollution of nitrate in a rural lowland catchment using the SWAT model," Agricultural Water Management, Elsevier, vol. 97(2), pages 317-325, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongfen Zhang & Nong Wang & Chongjun Tang & Shiqiang Zhang & Yuejun Song & Kaitao Liao & Xiaofei Nie, 2021. "A New Indicator to Better Represent the Impact of Landscape Pattern Change on Basin Soil Erosion and Sediment Yield in the Upper Reach of Ganjiang, China," Land, MDPI, vol. 10(9), pages 1-18, September.
    2. Antonio Minervino Amodio & Dario Gioia & Maria Danese & Nicola Masini & Canio Alfieri Sabia, 2023. "Land-Use Change Effects on Soil Erosion: The Case of Roman “Via Herculia” (Southern Italy)—Combining Historical Maps, Aerial Images and Soil Erosion Model," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    3. Morteza Akbari & Ehsan Neamatollahi & Hadi Memarian & Mohammad Alizadeh Noughani, 2023. "Assessing impacts of floods disaster on soil erosion risk based on the RUSLE-GloSEM approach in western Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1689-1710, June.
    4. Jifeng Lin & Yunhong Lin & Hongfei Zhao & Hongming He, 2022. "Soil Erosion Processes and Geographical Differentiation in Shaanxi during 1980–2015," Sustainability, MDPI, vol. 14(17), pages 1-15, August.
    5. Chandra Setyawan & Chin-Yu Lee & Miky Prawitasari, 2019. "Investigating spatial contribution of land use types and land slope classes on soil erosion distribution under tropical environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(2), pages 697-718, September.
    6. Yonghua Zhao & Li Liu & Shuaizhi Kang & Yong Ao & Lei Han & Chaoqun Ma, 2021. "Quantitative Analysis of Factors Influencing Spatial Distribution of Soil Erosion Based on Geo-Detector Model under Diverse Geomorphological Types," Land, MDPI, vol. 10(6), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bossa, A.Y. & Diekkrüger, B. & Giertz, S. & Steup, G. & Sintondji, L.O. & Agbossou, E.K. & Hiepe, C., 2012. "Modeling the effects of crop patterns and management scenarios on N and P loads to surface water and groundwater in a semi-humid catchment (West Africa)," Agricultural Water Management, Elsevier, vol. 115(C), pages 20-37.
    2. Danvi, Alexandre & Giertz, Simone & Zwart, Sander J. & Diekkrüger, Bernd, 2017. "Comparing water quantity and quality in three inland valley watersheds with different levels of agricultural development in central Benin," Agricultural Water Management, Elsevier, vol. 192(C), pages 257-270.
    3. Zhang, Shanghong & Liu, Yan & Wang, Taiwei, 2014. "How land use change contributes to reducing soil erosion in the Jialing River Basin, China," Agricultural Water Management, Elsevier, vol. 133(C), pages 65-73.
    4. Kanthilanka, H. & Ramilan, T. & Farquharson, R.J. & Weerahewa, J., 2023. "Optimal nitrogen fertilizer decisions for rice farming in a cascaded tank system in Sri Lanka: An analysis using an integrated crop, hydro-nutrient and economic model," Agricultural Systems, Elsevier, vol. 207(C).
    5. Liu, Ruimin & Zhang, Peipei & Wang, Xiujuan & Chen, Yaxin & Shen, Zhenyao, 2013. "Assessment of effects of best management practices on agricultural non-point source pollution in Xiangxi River watershed," Agricultural Water Management, Elsevier, vol. 117(C), pages 9-18.
    6. Hans Thodsen & Csilla Farkas & Jaroslaw Chormanski & Dennis Trolle & Gitte Blicher-Mathiesen & Ruth Grant & Alexander Engebretsen & Ignacy Kardel & Hans Estrup Andersen, 2017. "Modelling Nutrient Load Changes from Fertilizer Application Scenarios in Six Catchments around the Baltic Sea," Agriculture, MDPI, vol. 7(5), pages 1-17, May.
    7. Alice Bernini & Rike Becker & Odunayo David Adeniyi & Giorgio Pilla & Seyed Hamidreza Sadeghi & Michael Maerker, 2023. "Hydrological Implications of Recent Droughts (2004–2022): A SWAT-Based Study in an Ancient Lowland Irrigation Area in Lombardy, Northern Italy," Sustainability, MDPI, vol. 15(24), pages 1-24, December.
    8. Yiannis Panagopoulos & Christos Makropoulos & Maria Mimikou, 2011. "Diffuse Surface Water Pollution: Driving Factors for Different Geoclimatic Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3635-3660, November.
    9. Jiawei Li & Junyou Liu, 2022. "Predicting Freshwater Microbial Pollution Using a Spatial Model: Transferability between Catchments," Sustainability, MDPI, vol. 14(20), pages 1-14, October.
    10. Huang, Feng & Li, Baoguo, 2010. "Assessing grain crop water productivity of China using a hydro-model-coupled-statistics approach: Part I: Method development and validation," Agricultural Water Management, Elsevier, vol. 97(7), pages 1077-1092, July.
    11. Kuemmerlen, Mathias & Schmalz, Britta & Guse, Björn & Cai, Qinghua & Fohrer, Nicola & Jähnig, Sonja C., 2014. "Integrating catchment properties in small scale species distribution models of stream macroinvertebrates," Ecological Modelling, Elsevier, vol. 277(C), pages 77-86.
    12. De Girolamo, Anna Maria & Spanò, Marinella & D’Ambrosio, Ersilia & Ricci, Giovanni Francesco & Gentile, Francesco, 2019. "Developing a nitrogen load apportionment tool: Theory and application," Agricultural Water Management, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:174:y:2016:i:c:p:82-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.