IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i3p531-d1076821.html
   My bibliography  Save this article

Using and Creating Microclimates for Cork Oak Adaptation to Climate Change

Author

Listed:
  • André Vizinho

    (cE3c-Center for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal)

  • Adriana Príncipe

    (cE3c-Center for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal)

  • Ana Cátia Vasconcelos

    (cE3c-Center for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal)

  • Rui Rebelo

    (cE3c-Center for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal)

  • Cristina Branquinho

    (cE3c-Center for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal)

  • Gil Penha-Lopes

    (cE3c-Center for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal)

Abstract

In Mediterranean climate regions, climate change is increasing aridity and contributing to the mortality rate of Quercus suber , reducing the success of reforestation efforts. Using and creating microclimates is a recommended climate adaptation strategy that needs research. Our hypothesis is that planting Q. suber in north-facing slopes and water lines results in a higher survival rate than those that are planted in ridges and south-facing slopes. Secondly, our hypothesis is that existing shrubs (in this case, Cistus ladanifer ) can be used to create microclimatic sheltering and increase the survival of Q. suber plantations. In experiment 1, we tested the survival of Q. suber plantations in four different topographic conditions. For that, 80 Q. suber plants were planted over four different topographic conditions, where soil probes were installed to monitor soil moisture and temperature. Two years after, the results show an increased survival rate in the north-facing slope and water line when compared to the ridge area ( p = 0.032). In experiment 2, we tested if planting in the shade of rows of C. ladanifer increases the survival rate of Q. suber plantations. For that, 1200 Q. suber plants were planted; 600 in a Montado open area with no shade and 600 under the shade of rows of C. ladanifer shrubs. A total of 17 months after plantation, there was a significantly higher survival rate of the shaded plants ( p = 0.027). We conclude that microclimates created by topography and shrubs can have a significant impact on the survival of Q. suber plantations and discuss the situations in which these can apply.

Suggested Citation

  • André Vizinho & Adriana Príncipe & Ana Cátia Vasconcelos & Rui Rebelo & Cristina Branquinho & Gil Penha-Lopes, 2023. "Using and Creating Microclimates for Cork Oak Adaptation to Climate Change," Land, MDPI, vol. 12(3), pages 1-15, February.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:3:p:531-:d:1076821
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/3/531/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/3/531/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. André Vizinho & David Avelar & Cristina Branquinho & Tiago Capela Lourenço & Silvia Carvalho & Alice Nunes & Leonor Sucena-Paiva & Hugo Oliveira & Ana Lúcia Fonseca & Filipe Duarte Santos & Maria José, 2021. "Framework for Climate Change Adaptation of Agriculture and Forestry in Mediterranean Climate Regions," Land, MDPI, vol. 10(2), pages 1-33, February.
    2. Vizinho, André & Avelar, David & Fonseca, Ana Lúcia & Carvalho, Silvia & Sucena-Paiva, Leonor & Pinho, Pedro & Nunes, Alice & Branquinho, Cristina & Vasconcelos, Ana Cátia & Santos, Filipe Duarte & Ro, 2021. "Framing the application of Adaptation Pathways for agroforestry in Mediterranean drylands," Land Use Policy, Elsevier, vol. 104(C).
    3. Maria Pilar Rodríguez-Rojo & Sonia Roig & Celia López-Carrasco & María Manuela Redondo García & Daniel Sánchez-Mata, 2022. "Which Factors Favour Biodiversity in Iberian Dehesas?," Sustainability, MDPI, vol. 14(4), pages 1-16, February.
    4. T. W. Crowther & H. B. Glick & K. R. Covey & C. Bettigole & D. S. Maynard & S. M. Thomas & J. R. Smith & G. Hintler & M. C. Duguid & G. Amatulli & M.-N. Tuanmu & W. Jetz & C. Salas & C. Stam & D. Piot, 2015. "Mapping tree density at a global scale," Nature, Nature, vol. 525(7568), pages 201-205, September.
    5. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    6. Chenyao Yang & Helder Fraga & Wim Ieperen & Henrique Trindade & João A. Santos, 2019. "Effects of climate change and adaptation options on winter wheat yield under rainfed Mediterranean conditions in southern Portugal," Climatic Change, Springer, vol. 154(1), pages 159-178, May.
    7. Rares Halbac-Cotoara-Zamfir & Daniela Smiraglia & Giovanni Quaranta & Rosanna Salvia & Luca Salvati & Antonio Giménez-Morera, 2020. "Land Degradation and Mitigation Policies in the Mediterranean Region: A Brief Commentary," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark A. Anthony & Leho Tedersoo & Bruno Vos & Luc Croisé & Henning Meesenburg & Markus Wagner & Henning Andreae & Frank Jacob & Paweł Lech & Anna Kowalska & Martin Greve & Genoveva Popova & Beat Frey , 2024. "Fungal community composition predicts forest carbon storage at a continental scale," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Yann Duval & Simon Hardy, 2021. "Climate Change and Trade Facilitation: Estimating Greenhouse Gas Emission Savings from Implementation of Cross-Border Paperless Trade in Asia and the Pacific," Journal of Asian Economic Integration, , vol. 3(2), pages 190-210, September.
    3. Vizinho, André & Avelar, David & Fonseca, Ana Lúcia & Carvalho, Silvia & Sucena-Paiva, Leonor & Pinho, Pedro & Nunes, Alice & Branquinho, Cristina & Vasconcelos, Ana Cátia & Santos, Filipe Duarte & Ro, 2021. "Framing the application of Adaptation Pathways for agroforestry in Mediterranean drylands," Land Use Policy, Elsevier, vol. 104(C).
    4. Rosanna Salvia & Valentina Quaranta & Adele Sateriano & Giovanni Quaranta, 2022. "Land Resource Depletion, Regional Disparities, and the Claim for a Renewed ‘Sustainability Thinking’ under Early Desertification Conditions," Resources, MDPI, vol. 11(3), pages 1-14, March.
    5. Daniela Smiraglia & Alice Cavalli & Chiara Giuliani & Francesca Assennato, 2023. "The Increasing Coastal Urbanization in the Mediterranean Environment: The State of the Art in Italy," Land, MDPI, vol. 12(5), pages 1-17, May.
    6. César Antonio Rodríguez González & Ángel Mariano Rodríguez-Pérez & Raúl López & José Antonio Hernández-Torres & Julio José Caparrós-Mancera, 2022. "Sensitivity Analysis in Mean Annual Sediment Yield Modeling with Respect to Rainfall Probability Distribution Functions," Land, MDPI, vol. 12(1), pages 1-22, December.
    7. Siyuan Fang & Xingyi Lyu & Tian Tong & Aniqa Ibnat Lim & Tao Li & Jiming Bao & Yun Hang Hu, 2023. "Turning dead leaves into an active multifunctional material as evaporator, photocatalyst, and bioplastic," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. André Vizinho & David Avelar & Cristina Branquinho & Tiago Capela Lourenço & Silvia Carvalho & Alice Nunes & Leonor Sucena-Paiva & Hugo Oliveira & Ana Lúcia Fonseca & Filipe Duarte Santos & Maria José, 2021. "Framework for Climate Change Adaptation of Agriculture and Forestry in Mediterranean Climate Regions," Land, MDPI, vol. 10(2), pages 1-33, February.
    9. Hanan Ali Alrteimei & Zulfa Hanan Ash’aari & Farrah Melissa Muharram, 2022. "Last Decade Assessment of the Impacts of Regional Climate Change on Crop Yield Variations in the Mediterranean Region," Agriculture, MDPI, vol. 12(11), pages 1-21, October.
    10. Wenqing Li & Rubén D. Manzanedo & Yuan Jiang & Wenqiu Ma & Enzai Du & Shoudong Zhao & Tim Rademacher & Manyu Dong & Hui Xu & Xinyu Kang & Jun Wang & Fang Wu & Xuefeng Cui & Neil Pederson, 2023. "Reassessment of growth-climate relations indicates the potential for decline across Eurasian boreal larch forests," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Donatella Danzi & Domenico De Paola & Angelo Petrozza & Stephan Summerer & Francesco Cellini & Domenico Pignone & Michela Janni, 2022. "The Use of Near-Infrared Imaging (NIR) as a Fast Non-Destructive Screening Tool to Identify Drought-Tolerant Wheat Genotypes," Agriculture, MDPI, vol. 12(4), pages 1-8, April.
    12. Yang, Chenyao & Fraga, Helder & van Ieperen, Wim & Santos, João A., 2020. "Assessing the impacts of recent-past climatic constraints on potential wheat yield and adaptation options under Mediterranean climate in southern Portugal," Agricultural Systems, Elsevier, vol. 182(C).
    13. Paulo Flores Ribeiro & José Lima Santos, 2023. "Exploring the Effects of Climate Change on Farming System Choice: A Farm-Level Space-for-Time Approach," Land, MDPI, vol. 12(12), pages 1-15, November.
    14. Yanlong Guo & Xingmeng Ma & Yelin Zhu & Denghang Chen & Han Zhang, 2023. "Research on Driving Factors of Forest Ecological Security: Evidence from 12 Provincial Administrative Regions in Western China," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
    15. Sorina-Simona Moraru & Antoaneta Ene & Alina Badila, 2020. "Physical and Hydro-Physical Characteristics of Soil in the Context of Climate Change. A Case Study in Danube River Basin, SE Romania," Sustainability, MDPI, vol. 12(21), pages 1-26, November.
    16. Nazam Maqbool, 2024. "Challenges And Opportunities Of The Ten Billion Tree Tsunami Project (TBTTPP): A Case Study Of The Ex-FATA (Pakistan)," PIDE Knowledge Brief 2024:111, Pakistan Institute of Development Economics.
    17. Kailiang Yu & Philippe Ciais & Sonia I. Seneviratne & Zhihua Liu & Han Y. H. Chen & Jonathan Barichivich & Craig D. Allen & Hui Yang & Yuanyuan Huang & Ashley P. Ballantyne, 2022. "Field-based tree mortality constraint reduces estimates of model-projected forest carbon sinks," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Pedro Beça & António C. Rodrigues & João P. Nunes & Paulo Diogo & Babar Mujtaba, 2023. "Optimizing Reservoir Water Management in a Changing Climate," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3423-3437, July.
    19. Xinhai Lu & Yanwei Zhang & Chaoran Lin & Feng Wu, 2021. "Evolutionary Overview and Prediction of Themes in the Field of Land Degradation," Land, MDPI, vol. 10(3), pages 1-23, March.
    20. Letizia Pace & Vito Imbrenda & Maria Lanfredi & Pavel Cudlín & Tiziana Simoniello & Luca Salvati & Rosa Coluzzi, 2023. "Delineating the Intrinsic, Long-Term Path of Land Degradation: A Spatially Explicit Transition Matrix for Italy, 1960–2010," IJERPH, MDPI, vol. 20(3), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:3:p:531-:d:1076821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.