IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i11p2076-d1283011.html
   My bibliography  Save this article

Risk Assessment of World Corn Salinization Hazard Factors Based on EPIC Model and Information Diffusion

Author

Listed:
  • Degen Lin

    (School of Business, Wenzhou University, Wenzhou 325000, China)

  • Chuanqi Hu

    (Northwest Institute of Historical Environment and Socio-Economic Development, Shaanxi Normal University, Xi’an 710119, China)

  • Fang Lian

    (Integrated Research on Disaster Risk (IRDR) International Programme Office, Beijing 100094, China)

  • Jing’ai Wang

    (Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education, Beijing Normal University, Beijing 100875, China
    State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
    Academy of Plateau Science Sustainability, The People’s Government of Qinghai Province and Beijing Normal University, Xining 810016, China)

  • Xingli Gu

    (College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China)

  • Yingxian Yu

    (School of Business, Wenzhou University, Wenzhou 325000, China)

Abstract

Salinization is a serious land degradation phenomenon. This study identified the salinity stress threshold as a causal factor for salinization, focusing on global maize fields as the study area. By excluding environmental stressors and setting salinization scenarios, the EPIC model was used to simulate the daily salinity stress threshold during the corn growth process. The global intensity and risk of salinization-induced disaster for maize were evaluated. Based on the principle of information diffusion, the intensity of salinization-induced disaster was calculated for different return periods. The main conclusions were as follows: (1) By excluding environmental stress factors and setting salinization scenarios, algorithms for the salinization index during the growing season and the intensity of salinization-induced disaster were proposed. (2) The salinity hazard factor is highly risky and concentrated in arid and semi-arid regions, while it is relatively low in humid regions. (3) As the recurrence period increases, the risk of salinization-induced hazard becomes higher, the affected area expands, and the risk level increases. (4) The salinization intensity results of this study are consistent with the research results of HWSD (R 2 = 0.9546) and GLASOD (R 2 = 0.9162).

Suggested Citation

  • Degen Lin & Chuanqi Hu & Fang Lian & Jing’ai Wang & Xingli Gu & Yingxian Yu, 2023. "Risk Assessment of World Corn Salinization Hazard Factors Based on EPIC Model and Information Diffusion," Land, MDPI, vol. 12(11), pages 1-19, November.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:11:p:2076-:d:1283011
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/11/2076/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/11/2076/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Datta, K. K. & Sharma, V. P. & Sharma, D. P., 1998. "Estimation of a production function for wheat under saline conditions," Agricultural Water Management, Elsevier, vol. 36(1), pages 85-94, February.
    2. Katerji, N. & van Hoorn, J. W. & Hamdy, A. & Mastrorilli, M., 2003. "Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods," Agricultural Water Management, Elsevier, vol. 62(1), pages 37-66, August.
    3. Mirlas, V., 2012. "Assessing soil salinity hazard in cultivated areas using MODFLOW model and GIS tools: A case study from the Jezre’el Valley, Israel," Agricultural Water Management, Elsevier, vol. 109(C), pages 144-154.
    4. Sija F. Stofberg & Gualbert H. P. Oude Essink & Pieter S. Pauw & Perry G. B. Louw & Anton Leijnse & Sjoerd E. A. T. M. Zee, 2017. "Fresh Water Lens Persistence and Root Zone Salinization Hazard Under Temperate Climate," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(2), pages 689-702, January.
    5. Hao Guo & Xingming Zhang & Fang Lian & Yuan Gao & Degen Lin & Jing’ai Wang, 2016. "Drought Risk Assessment Based on Vulnerability Surfaces: A Case Study of Maize," Sustainability, MDPI, vol. 8(8), pages 1-22, August.
    6. Nathaniel D. Mueller & James S. Gerber & Matt Johnston & Deepak K. Ray & Navin Ramankutty & Jonathan A. Foley, 2012. "Closing yield gaps through nutrient and water management," Nature, Nature, vol. 490(7419), pages 254-257, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qingming & Huo, Zailin & Zhang, Liudong & Wang, Jianhua & Zhao, Yong, 2016. "Impact of saline water irrigation on water use efficiency and soil salt accumulation for spring maize in arid regions of China," Agricultural Water Management, Elsevier, vol. 163(C), pages 125-138.
    2. Katerji, N. & van Hoorn, J. W. & Hamdy, A. & Mastrorilli, M., 2004. "Comparison of corn yield response to plant water stress caused by salinity and by drought," Agricultural Water Management, Elsevier, vol. 65(2), pages 95-101, March.
    3. Cao, Juan & Zhang, Zhao & Tao, Fulu & Chen, Yi & Luo, Xiangzhong & Xie, Jun, 2023. "Forecasting global crop yields based on El Nino Southern Oscillation early signals," Agricultural Systems, Elsevier, vol. 205(C).
    4. Westhoek, Henk & Ingram, John & van Berkum, Siemen & Hajer, Maarten, 2015. "The European food system and natural resources: Impacts and Options," 148th Seminar, November 30-December 1, 2015, The Hague, The Netherlands 229279, European Association of Agricultural Economists.
    5. Giacomo Falchetta & Nicolò Stevanato & Magda Moner-Girona & Davide Mazzoni & Emanuela Colombo & Manfred Hafner, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," Working Papers 2020.09, Fondazione Eni Enrico Mattei.
    6. Kathrin Stenchly & Marc Victor Hansen & Katharina Stein & Andreas Buerkert & Wilhelm Loewenstein, 2018. "Income Vulnerability of West African Farming Households to Losses in Pollination Services: A Case Study from Ouagadougou, Burkina Faso," Sustainability, MDPI, vol. 10(11), pages 1-12, November.
    7. Singh, Kuntal & McClean, Colin J. & Büker, Patrick & Hartley, Sue E. & Hill, Jane K., 2017. "Mapping regional risks from climate change for rainfed rice cultivation in India," Agricultural Systems, Elsevier, vol. 156(C), pages 76-84.
    8. Thomas M. Koutsos & Georgios C. Menexes & Andreas P. Mamolos, 2021. "The Use of Crop Yield Autocorrelation Data as a Sustainable Approach to Adjust Agronomic Inputs," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    9. Mr. Emmanuel Momolu Pope & Prof. Wilson Opile & Dr. Lucas Ngode & Dr. Chepkoech Emmy, 2023. "Assessment of Upland Rice Production Constraints and Farmers’ Preferred Varieties in Liberia," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 7(2), pages 1307-1322, February.
    10. F. Jorge Bornemann & David P. Rowell & Barbara Evans & Dan J. Lapworth & Kamazima Lwiza & David M.J. Macdonald & John H. Marsham & Kindie Tesfaye & Matthew J. Ascott & Celia Way, 2019. "Future changes and uncertainty in decision-relevant measures of East African climate," Climatic Change, Springer, vol. 156(3), pages 365-384, October.
    11. Purola, Tuomo & Lehtonen, Heikki, 2020. "Evaluating profitability of soil-renovation investments under crop rotation constraints in Finland," Agricultural Systems, Elsevier, vol. 180(C).
    12. Yibo Luan & Wenquan Zhu & Xuefeng Cui & Günther Fischer & Terence P. Dawson & Peijun Shi & Zhenke Zhang, 2019. "Cropland yield divergence over Africa and its implication for mitigating food insecurity," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(5), pages 707-734, June.
    13. Zheng, Huifang & Mei, Peipei & Wang, Wending & Yin, Yulong & Li, Haojie & Zheng, Mengyao & Ou, Xingqi & Cui, Zhenling, 2023. "Effects of super absorbent polymer on crop yield, water productivity and soil properties: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 282(C).
    14. Minghao Bai & Shenbei Zhou & Ting Tang, 2022. "A Reconstruction of Irrigated Cropland Extent in China from 2000 to 2019 Using the Synergy of Statistics and Satellite-Based Datasets," Land, MDPI, vol. 11(10), pages 1-27, September.
    15. Ying Guo & Rui Wang & Zhijun Tong & Xingpeng Liu & Jiquan Zhang, 2019. "Dynamic Evaluation and Regionalization of Maize Drought Vulnerability in the Midwest of Jilin Province," Sustainability, MDPI, vol. 11(15), pages 1-21, August.
    16. Nina Repar & Pierrick Jan & Thomas Nemecek & Dunja Dux & Martina Alig Ceesay & Reiner Doluschitz, 2016. "Local versus Global Environmental Performance of Dairying and Their Link to Economic Performance: A Case Study of Swiss Mountain Farms," Sustainability, MDPI, vol. 8(12), pages 1-19, December.
    17. Zhang, Bangbang & Li, Xian & Chen, Haibin & Niu, Wenhao & Kong, Xiangbin & Yu, Qiang & Zhao, Minjuan & Xia, Xianli, 2022. "Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity," Land Use Policy, Elsevier, vol. 117(C).
    18. Hampf, Anna C. & Carauta, Marcelo & Latynskiy, Evgeny & Libera, Affonso A.D. & Monteiro, Leonardo & Sentelhas, Paulo & Troost, Christian & Berger, Thomas & Nendel, Claas, 2018. "The biophysical and socio-economic dimension of yield gaps in the southern Amazon – A bio-economic modelling approach," Agricultural Systems, Elsevier, vol. 165(C), pages 1-13.
    19. Dapeng WANG & Liang ZHENG & Songdong GU & Yuefeng SHI & Long LIANG & Fanqiao MENG & Yanbin GUO & Xiaotang JU & Wenliang WU, 2018. "Soil nitrate accumulation and leaching in conventional, optimized and organic cropping systems," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(4), pages 156-163.
    20. Xiong, Wei & Balkovič, Juraj & van der Velde, Marijn & Zhang, Xuesong & Izaurralde, R. César & Skalský, Rastislav & Lin, Erda & Mueller, Nathan & Obersteiner, Michael, 2014. "A calibration procedure to improve global rice yield simulations with EPIC," Ecological Modelling, Elsevier, vol. 273(C), pages 128-139.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:11:p:2076-:d:1283011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.