IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i9p1465-d905104.html
   My bibliography  Save this article

Impact of Long-Term Nutrient Supply Options on Soil Aggregate Stability after Nineteen Years of Rice–Wheat Cropping System

Author

Listed:
  • Sunita Kumari Meena

    (ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi 110012, India
    Department of Soil Science, Sugarcane Research Institute, Dr. Rajendra Prasad Central Agricultural University (RPCAU), Pusa, Samastipur 848125, India)

  • Brahma Swaroop Dwivedi

    (ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi 110012, India
    ICAR-National Bureau of Soil Survey and Land Use Planning (ICAR-NBSS & LUP), Nagpur 440033, India)

  • Mahesh Chand Meena

    (ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi 110012, India)

  • Saba Prasad Datta

    (ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi 110012, India)

  • Vinod Kumar Singh

    (ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi 110012, India
    ICAR-Central Research Institute for Dryland Agriculture (ICAR-CRIDA), Hyderabad 500059, India)

  • Rajendra Prasad Mishra

    (ICAR-Indian Institute of Farming Systems Research (ICAR-IIFSR), Modipuram Meerut 250110, India)

  • Debashish Chakraborty

    (ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi 110012, India)

  • Abir Dey

    (ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi 110012, India)

  • Vijay Singh Meena

    (ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan (ICAR-VPKAS), Almora 263601, India
    CIMMYT-Borlaug Institute for South Asia (BISA), Samastipur 848125, India)

Abstract

Continuing soil degradation remains a serious threat to future food security. Soil aggregation can help protect soil organic matter from biodegradation; it affects soil physical (aeration), chemical (water infiltration), and biological (microbial) activities. The integrated plant nutrition system (IPNS) and organic farming (OF) options have been contemplated as a sustainable strategy to sustain soil aggregate stability under adverse climatic conditions and a possible tool to restore degraded soil systems. Results suggested that the application of plant nutrients based on IPNS and soil test crop response (STCR) including mineral fertilizers and organic manure (farmyard manure: FYM) improved soil aggregate stability and mean weight diameter (MWD) under rice–wheat cropping systems. A long-term (19 year) cropping system (rice–wheat) experiment was examined to identify best nutrient management practices. Seven nutrient supply options were applied: organic, mineral fertilizer in combination with IPNS, IPNS + B/IPNS + C to improve soil aggregate stability and MWD after completing 19 cropping cycles of rice–wheat cropping systems. Results showed that significantly higher (+31%) macroaggregates were dominant in the surface soil layer than in the subsurface soil. The significantly highest macroaggregates were observed under OF (60.12 g 100 g −1 dry soil) management practices followed by IPNS options. The MWD was significantly increased (+17%) between surface and subsurface soil. Maximum MWD was reported with OF (0.93 mm) management practices followed by the IPNS + C (0.78 mm), IPNS + B (0.77 mm), IPNS (0.70 mm), STCR (0.69 mm), NPK (0.67 mm), and unfertilized control (0.66 mm) plots. Overall, results suggest that the adoption of IPNS options, such as organic farming (OF), RDF, STCR, and inclusion of pulses (berseem and cowpea), significantly improved all soil aggregation fractions in the soil system and also offered an additional benefit in terms of soil sustainability.

Suggested Citation

  • Sunita Kumari Meena & Brahma Swaroop Dwivedi & Mahesh Chand Meena & Saba Prasad Datta & Vinod Kumar Singh & Rajendra Prasad Mishra & Debashish Chakraborty & Abir Dey & Vijay Singh Meena, 2022. "Impact of Long-Term Nutrient Supply Options on Soil Aggregate Stability after Nineteen Years of Rice–Wheat Cropping System," Land, MDPI, vol. 11(9), pages 1-17, September.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:9:p:1465-:d:905104
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/9/1465/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/9/1465/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Purushothaman Chirakkuzhyil Abhilash, 2021. "Restoring the Unrestored: Strategies for Restoring Global Land during the UN Decade on Ecosystem Restoration (UN-DER)," Land, MDPI, vol. 10(2), pages 1-19, February.
    2. Luján Soto, Raquel & Cuéllar Padilla, Mamen & de Vente, Joris, 2020. "Participatory selection of soil quality indicators for monitoring the impacts of regenerative agriculture on ecosystem services," Ecosystem Services, Elsevier, vol. 45(C).
    3. Rattan Lal, 2015. "Restoring Soil Quality to Mitigate Soil Degradation," Sustainability, MDPI, vol. 7(5), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naomi di Santo & Ilaria Russo & Roberta Sisto, 2022. "Climate Change and Natural Resource Scarcity: A Literature Review on Dry Farming," Land, MDPI, vol. 11(12), pages 1-25, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sunita K. Meena & Brahma S. Dwivedi & Mahesh C. Meena & Saba P. Datta & Vinod K. Singh & Rajendra P. Mishra & Debashish Chakraborty & Abir Dey & Vijay S. Meena, 2022. "Effect of Nutrient Management on Soil Carbon Quantities, Qualities, and Stock under Rice-Wheat Production System," Agriculture, MDPI, vol. 12(11), pages 1-17, November.
    2. Ahmad A. Al-Ghamdi & Yilma Tadesse & Nuru Adgaba & Abdulaziz G. Alghamdi, 2021. "Soil Degradation and Restoration in Southwestern Saudi Arabia through Investigation of Soil Physiochemical Characteristics and Nutrient Status as Indicators," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    3. Sriroop Chaudhuri & Mimi Roy & Louis M. McDonald & Yves Emendack, 2023. "Land Degradation–Desertification in Relation to Farming Practices in India: An Overview of Current Practices and Agro-Policy Perspectives," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    4. Alvyra Slepetiene & Mykola Kochiieru & Linas Jurgutis & Audrone Mankeviciene & Aida Skersiene & Olgirda Belova, 2022. "The Effect of Anaerobic Digestate on the Soil Organic Carbon and Humified Carbon Fractions in Different Land-Use Systems in Lithuania," Land, MDPI, vol. 11(1), pages 1-17, January.
    5. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    6. Ying-Tzy Jou & Elmi Junita Tarigan & Cahyo Prayogo & Chesly Kit Kobua & Yu-Ting Weng & Yu-Min Wang, 2022. "Effects of Sphingobium yanoikuyae SJTF8 on Rice ( Oryza sativa ) Seed Germination and Root Development," Agriculture, MDPI, vol. 12(11), pages 1-15, November.
    7. Ethan Gordon & Federico Davila & Chris Riedy, 2022. "Transforming landscapes and mindscapes through regenerative agriculture," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(2), pages 809-826, June.
    8. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    9. Ahammad, Ronju & Hossain, Mohammed Kamal & Sobhan, Istiak & Hasan, Rakibul & Biswas, Shekhar R. & Mukul, Sharif A., 2023. "Social-ecological and institutional factors affecting forest and landscape restoration in the Chittagong Hill Tracts of Bangladesh," Land Use Policy, Elsevier, vol. 125(C).
    10. Jiani Ma & Chao Zhang & Wenju Yun & Yahui Lv & Wanling Chen & Dehai Zhu, 2020. "The Temporal Analysis of Regional Cultivated Land Productivity with GPP Based on 2000–2018 MODIS Data," Sustainability, MDPI, vol. 12(1), pages 1-16, January.
    11. Grażyna Żukowska & Magdalena Myszura-Dymek & Szymon Roszkowski & Magdalena Olkiewicz, 2023. "Selected Properties of Soil-like Substrates Made from Mine Coal Waste and Their Effect on Plant Yields," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    12. Anna Kocira & Mariola Staniak & Marzena Tomaszewska & Rafał Kornas & Jacek Cymerman & Katarzyna Panasiewicz & Halina Lipińska, 2020. "Legume Cover Crops as One of the Elements of Strategic Weed Management and Soil Quality Improvement. A Review," Agriculture, MDPI, vol. 10(9), pages 1-41, September.
    13. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    14. Sung Kyu Kim & Fiona Marshall & Neil M. Dawson, 2022. "Revisiting Rwanda’s agricultural intensification policy: benefits of embracing farmer heterogeneity and crop-livestock integration strategies," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(3), pages 637-656, June.
    15. Muhammad Faisal Saleem & Abdul Ghaffar & Muhammad Habib ur Rahman & Muhammad Imran & Rashid Iqbal & Walid Soufan & Subhan Danish & Rahul Datta & Karthika Rajendran & Ayman EL Sabagh, 2022. "Effect of Short-Term Zero Tillage and Legume Intercrops on Soil Quality, Agronomic and Physiological Aspects of Cotton under Arid Climate," Land, MDPI, vol. 11(2), pages 1-15, February.
    16. Asitha De Silva & Dilanthi Amaratunga & Richard Haigh, 2022. "Green and Blue Infrastructure as Nature-Based Better Preparedness Solutions for Disaster Risk Reduction: Key Policy Aspects," Sustainability, MDPI, vol. 14(23), pages 1-26, December.
    17. Ziauddin Safari & Sayed Tamim Rahimi & Kamal Ahmed & Ahmad Sharafati & Ghaith Falah Ziarh & Shamsuddin Shahid & Tarmizi Ismail & Nadhir Al-Ansari & Eun-Sung Chung & Xiaojun Wang, 2021. "Estimation of Spatial and Seasonal Variability of Soil Erosion in a Cold Arid River Basin in Hindu Kush Mountainous Region Using Remote Sensing," Sustainability, MDPI, vol. 13(3), pages 1-14, February.
    18. Jacek Pranagal & Sławomir Ligęza & Halina Smal & Joanna Gmitrowicz-Iwan, 2023. "Effects of Waste Application (Carboniferous Rock and Post-Fermentation Sludge) on Soil Quality," Land, MDPI, vol. 12(2), pages 1-20, February.
    19. Boix-Fayos, Carolina & de Vente, Joris, 2023. "Challenges and potential pathways towards sustainable agriculture within the European Green Deal," Agricultural Systems, Elsevier, vol. 207(C).
    20. Alberts Auzins & Ieva Leimane & Agnese Krievina & Inga Morozova & Andris Miglavs & Peteris Lakovskis, 2023. "Evaluation of Environmental and Economic Performance of Crop Production in Relation to Crop Rotation, Catch Crops, and Tillage," Agriculture, MDPI, vol. 13(8), pages 1-25, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:9:p:1465-:d:905104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.