IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i11p1822-d959750.html
   My bibliography  Save this article

Effect of Nutrient Management on Soil Carbon Quantities, Qualities, and Stock under Rice-Wheat Production System

Author

Listed:
  • Sunita K. Meena

    (ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi 110012, India
    Department of Soil Science, Sugarcane Research Institute, Dr. Rajendra Prasad Central Agricultural University (RPCAU), Pusa, Samastipur 848125, India)

  • Brahma S. Dwivedi

    (ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi 110012, India
    ICAR-National Bureau of Soil Survey and Land Use Planning (ICAR-NBSS & LUP), Nagpur 440033, India)

  • Mahesh C. Meena

    (ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi 110012, India)

  • Saba P. Datta

    (ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi 110012, India)

  • Vinod K. Singh

    (ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi 110012, India
    ICAR-Central Research Institute for Dryland Agriculture (ICAR-CRIDA), Hyderabad 500059, India)

  • Rajendra P. Mishra

    (ICAR-Indian Institute of Farming Systems Research (ICAR-IIFSR), Modipuram Meerut 250110, India)

  • Debashish Chakraborty

    (ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi 110012, India)

  • Abir Dey

    (ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi 110012, India)

  • Vijay S. Meena

    (ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan (ICAR-VPKAS), Almora 263601, India
    CIMMYT-Borlaug Institute for South Asia (BISA), Samastipur 848125, India)

Abstract

The nutrient management options have been contemplated to be sustainable strategies to sustain rice-wheat production systems and a conceivable option to maintain soil organic carbon (SOC) in soil systems. We hypothesized that carbon fraction could be a critical factor in improving carbon storage in cereal-based production systems. The results suggested that the adoption of IPNS legumes (berseem and cowpea), STCR, and OF improved SOC concentrations. It was observed that significantly higher (57%) contribution in carbon concentration very labile carbon (VLC) was trailed by the non-labile carbon (NLC, 23%), labile carbon (LC, 12%), and less labile carbon (LLC 8%) in the surface soil layer. Results showed that carbon stock varied from 11.73 to 18.39 and 9.95 to 11.75 t ha −1 in the surface and subsurface soil depths, respectively, and significantly higher carbon stock was maintained in OF in both soil depths over the other nutrient management practices. Results showed that for the surface layer C-stocks registered in the following order (0–15 cm soil depth) OF (18.39 t ha −1 ) > IPNS + C (17.54 t ha −1 ) > IPNS + B (17.26 t ha −1 ) > IPNS (16.86 t ha −1 ) > STCR (15.54 t ha −1 ) > NPK (15.32 t ha −1 ) and unfertilized control (11.73 t ha −1 ). Overall, results suggested that the adoption of IPNS options addition of legumes significantly enhanced all carbon pools.

Suggested Citation

  • Sunita K. Meena & Brahma S. Dwivedi & Mahesh C. Meena & Saba P. Datta & Vinod K. Singh & Rajendra P. Mishra & Debashish Chakraborty & Abir Dey & Vijay S. Meena, 2022. "Effect of Nutrient Management on Soil Carbon Quantities, Qualities, and Stock under Rice-Wheat Production System," Agriculture, MDPI, vol. 12(11), pages 1-17, November.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:11:p:1822-:d:959750
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/11/1822/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/11/1822/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Purushothaman Chirakkuzhyil Abhilash, 2021. "Restoring the Unrestored: Strategies for Restoring Global Land during the UN Decade on Ecosystem Restoration (UN-DER)," Land, MDPI, vol. 10(2), pages 1-19, February.
    2. Eric A. Davidson & Ivan A. Janssens, 2006. "Temperature sensitivity of soil carbon decomposition and feedbacks to climate change," Nature, Nature, vol. 440(7081), pages 165-173, March.
    3. Rattan Lal, 2015. "Restoring Soil Quality to Mitigate Soil Degradation," Sustainability, MDPI, vol. 7(5), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sunita Kumari Meena & Brahma Swaroop Dwivedi & Mahesh Chand Meena & Saba Prasad Datta & Vinod Kumar Singh & Rajendra Prasad Mishra & Debashish Chakraborty & Abir Dey & Vijay Singh Meena, 2022. "Impact of Long-Term Nutrient Supply Options on Soil Aggregate Stability after Nineteen Years of Rice–Wheat Cropping System," Land, MDPI, vol. 11(9), pages 1-17, September.
    2. Ahmad A. Al-Ghamdi & Yilma Tadesse & Nuru Adgaba & Abdulaziz G. Alghamdi, 2021. "Soil Degradation and Restoration in Southwestern Saudi Arabia through Investigation of Soil Physiochemical Characteristics and Nutrient Status as Indicators," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    3. Sriroop Chaudhuri & Mimi Roy & Louis M. McDonald & Yves Emendack, 2023. "Land Degradation–Desertification in Relation to Farming Practices in India: An Overview of Current Practices and Agro-Policy Perspectives," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    4. Md. Zonayet & Alok Kumar Paul & Md. Faisal-E-Alam & Khalid Syfullah & Rui Alexandre Castanho & Daniel Meyer, 2023. "Impact of Biochar as a Soil Conditioner to Improve the Soil Properties of Saline Soil and Productivity of Tomato," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    5. S . K. Oni & F. Mieres & M. N. Futter & H. Laudon, 2017. "Soil temperature responses to climate change along a gradient of upland–riparian transect in boreal forest," Climatic Change, Springer, vol. 143(1), pages 27-41, July.
    6. Elena A. Mikhailova & Garth R. Groshans & Christopher J. Post & Mark A. Schlautman & Gregory C. Post, 2019. "Valuation of Soil Organic Carbon Stocks in the Contiguous United States Based on the Avoided Social Cost of Carbon Emissions," Resources, MDPI, vol. 8(3), pages 1-15, August.
    7. Alvyra Slepetiene & Mykola Kochiieru & Linas Jurgutis & Audrone Mankeviciene & Aida Skersiene & Olgirda Belova, 2022. "The Effect of Anaerobic Digestate on the Soil Organic Carbon and Humified Carbon Fractions in Different Land-Use Systems in Lithuania," Land, MDPI, vol. 11(1), pages 1-17, January.
    8. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    9. Ying-Tzy Jou & Elmi Junita Tarigan & Cahyo Prayogo & Chesly Kit Kobua & Yu-Ting Weng & Yu-Min Wang, 2022. "Effects of Sphingobium yanoikuyae SJTF8 on Rice ( Oryza sativa ) Seed Germination and Root Development," Agriculture, MDPI, vol. 12(11), pages 1-15, November.
    10. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    11. Ahammad, Ronju & Hossain, Mohammed Kamal & Sobhan, Istiak & Hasan, Rakibul & Biswas, Shekhar R. & Mukul, Sharif A., 2023. "Social-ecological and institutional factors affecting forest and landscape restoration in the Chittagong Hill Tracts of Bangladesh," Land Use Policy, Elsevier, vol. 125(C).
    12. Li Gao & Mingjing Huang & Wuping Zhang & Lei Qiao & Guofang Wang & Xumeng Zhang, 2021. "Comparative Study on Spatial Digital Mapping Methods of Soil Nutrients Based on Different Geospatial Technologies," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    13. Raitis Normunds Meļņiks & Arta Bārdule & Aldis Butlers & Jordane Champion & Santa Kalēja & Ilona Skranda & Guna Petaja & Andis Lazdiņš, 2023. "Carbon Losses from Topsoil in Abandoned Peat Extraction Sites Due to Ground Subsidence and Erosion," Land, MDPI, vol. 12(12), pages 1-17, December.
    14. Xiangwen Wu & Shuying Zang & Dalong Ma & Jianhua Ren & Qiang Chen & Xingfeng Dong, 2019. "Emissions of CO 2 , CH 4 , and N 2 O Fluxes from Forest Soil in Permafrost Region of Daxing’an Mountains, Northeast China," IJERPH, MDPI, vol. 16(16), pages 1-14, August.
    15. Husnain Husnain & I. Wigena & Ai Dariah & Setiari Marwanto & Prihasto Setyanto & Fahmuddin Agus, 2014. "CO 2 emissions from tropical drained peat in Sumatra, Indonesia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(6), pages 845-862, August.
    16. Nikolay Gorbach & Viktor Startsev & Anton Mazur & Evgeniy Milanovskiy & Anatoly Prokushkin & Alexey Dymov, 2022. "Simulation of Smoldering Combustion of Organic Horizons at Pine and Spruce Boreal Forests with Lab-Heating Experiments," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    17. Yuanbo Cao & Huijie Xiao & Baitian Wang & Yunlong Zhang & Honghui Wu & Xijing Wang & Yadong Yang & Tingting Wei, 2021. "Soil Respiration May Overestimate or Underestimate in Forest Ecosystems," Sustainability, MDPI, vol. 13(5), pages 1-16, March.
    18. Jiani Ma & Chao Zhang & Wenju Yun & Yahui Lv & Wanling Chen & Dehai Zhu, 2020. "The Temporal Analysis of Regional Cultivated Land Productivity with GPP Based on 2000–2018 MODIS Data," Sustainability, MDPI, vol. 12(1), pages 1-16, January.
    19. Asik Dutta & Ranjan Bhattacharyya & Raimundo Jiménez-Ballesta & Abir Dey & Namita Das Saha & Sarvendra Kumar & Chaitanya Prasad Nath & Ved Prakash & Surendra Singh Jatav & Abhik Patra, 2023. "Conventional and Zero Tillage with Residue Management in Rice–Wheat System in the Indo-Gangetic Plains: Impact on Thermal Sensitivity of Soil Organic Carbon Respiration and Enzyme Activity," IJERPH, MDPI, vol. 20(1), pages 1-18, January.
    20. Songbai Hong & Jinzhi Ding & Fei Kan & Hao Xu & Shaoyuan Chen & Yitong Yao & Shilong Piao, 2023. "Asymmetry of carbon sequestrations by plant and soil after forestation regulated by soil nitrogen," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:11:p:1822-:d:959750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.