IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i8p1156-d872122.html
   My bibliography  Save this article

The Carbon Emission Intensity of Industrial Land in China: Spatiotemporal Characteristics and Driving Factors

Author

Listed:
  • Liangen Zeng

    (College of Urban and Environmental Sciences, Peking University, Beijing 100871, China)

  • Chengming Li

    (School of Economics, Minzu University of China, Beijing 100871, China)

  • Zhongqi Liang

    (College of Urban and Environmental Sciences, Peking University, Beijing 100871, China)

  • Xuhai Zhao

    (School of Economics and Management, Tsinghua University, Beijing 100871, China
    Guangxi Rig Rural Revitalization Private Fund Management Co., Ltd., Nanning 530023, China)

  • Haoyu Hu

    (College of Urban and Environmental Sciences, Peking University, Beijing 100871, China)

  • Xiao Wang

    (Guanghua School of Management, Peking University, Beijing 100871, China)

  • Dandan Yuan

    (College of Urban and Environmental Sciences, Peking University, Beijing 100871, China)

  • Zhao Yu

    (Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China)

  • Tingzhang Yang

    (College of Business and Economics, Australian National University, Canberra, ACT 2600, Australia)

  • Jingming Lu

    (School of Agricultural Economics and Rural Development, Renmin University of China, Beijing 100872, China)

  • Qi Huang

    (School of Software and Microelectronics, Peking University, Beijing 100871, China)

  • Fuyao Qu

    (School of Economics, Peking University, Beijing 100871, China)

Abstract

CO 2 emission reduction has become a consensus all around the world. This paper investigates the spatiotemporal characteristics of industrial land carbon emission intensity (ILCEI) in China by spatial autocorrelation analysis, and applies the spatial Durbin model to reveal the influence of driving factors on ILCEI. The results indicate the following: (1) national ILCEI first shows a downward and then an upward trend during the period and presents a low pattern in both Eastern and Northeastern regions and a high pattern in the Northwestern region. (2) From a global perspective, ILCEI shows significant spatial agglomeration characteristics; from a local perspective, ILCEI is dominated by H-H and L-L agglomeration types, showing that spatial heterogeneity and spatial dependence are apparent in ILCEI. (3) ILCEI is significantly negatively affected by both R & D personnel and foreign-trade dependence, while urban population density notably has positive impacts on ILCEI. This paper is a beneficial policy practice for harmonizing the contradiction between industrial land expansion and carbon discharge.

Suggested Citation

  • Liangen Zeng & Chengming Li & Zhongqi Liang & Xuhai Zhao & Haoyu Hu & Xiao Wang & Dandan Yuan & Zhao Yu & Tingzhang Yang & Jingming Lu & Qi Huang & Fuyao Qu, 2022. "The Carbon Emission Intensity of Industrial Land in China: Spatiotemporal Characteristics and Driving Factors," Land, MDPI, vol. 11(8), pages 1-19, July.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:8:p:1156-:d:872122
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/8/1156/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/8/1156/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Pengjun & Zeng, Liangen & Li, Peilin & Lu, Haiyan & Hu, Haoyu & Li, Chengming & Zheng, Mengyuan & Li, Haitao & Yu, Zhao & Yuan, Dandan & Xie, Jinxin & Huang, Qi & Qi, Yuting, 2022. "China's transportation sector carbon dioxide emissions efficiency and its influencing factors based on the EBM DEA model with undesirable outputs and spatial Durbin model," Energy, Elsevier, vol. 238(PC).
    2. Jiang, Fuxiu & Kim, Kenneth A. & Nofsinger, John R. & Zhu, Bing, 2015. "Product market competition and corporate investment: Evidence from China," Journal of Corporate Finance, Elsevier, vol. 35(C), pages 196-210.
    3. Liangen Zeng & Haitao Li & Xiao Wang & Zhao Yu & Haoyu Hu & Xinyue Yuan & Xuhai Zhao & Chengming Li & Dandan Yuan & Yukun Gao & Yang Nie & Liangzhen Huang, 2022. "China’s Transport Land: Spatiotemporal Expansion Characteristics and Driving Mechanism," Land, MDPI, vol. 11(8), pages 1-18, July.
    4. Liu, Nan & Ma, Zujun & Kang, Jidong, 2015. "Changes in carbon intensity in China's industrial sector: Decomposition and attribution analysis," Energy Policy, Elsevier, vol. 87(C), pages 28-38.
    5. Chengming Li & Han Shi & Liangen Zeng & Xiaomeng Dong, 2022. "How Strategic Interaction of Innovation Policies between China’s Regional Governments Affects Wind Energy Innovation," Sustainability, MDPI, vol. 14(5), pages 1-20, February.
    6. Ye, Chusheng & Ye, Qin & Shi, Xunpeng & Sun, Yongping, 2020. "Technology gap, global value chain and carbon intensity: Evidence from global manufacturing industries," Energy Policy, Elsevier, vol. 137(C).
    7. J. Elhorst, 2010. "Applied Spatial Econometrics: Raising the Bar," Spatial Economic Analysis, Taylor & Francis Journals, vol. 5(1), pages 9-28.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liangen Zeng, 2022. "The Driving Mechanism of Urban Land Green Use Efficiency in China Based on the EBM Model with Undesirable Outputs and the Spatial Dubin Model," IJERPH, MDPI, vol. 19(17), pages 1-20, August.
    2. Ting Zhang & Longqian Chen & Ziqi Yu & Jinyu Zang & Long Li, 2022. "Spatiotemporal Evolution Characteristics of Carbon Emissions from Industrial Land in Anhui Province, China," Land, MDPI, vol. 11(11), pages 1-18, November.
    3. Liyuan Fu & Qing Wang, 2022. "Spatial and Temporal Distribution and the Driving Factors of Carbon Emissions from Urban Production Energy Consumption," IJERPH, MDPI, vol. 19(19), pages 1-29, September.
    4. Xinyue Yuan & Yang Nie & Liangen Zeng & Chao Lu & Tingzhang Yang, 2023. "Exploring the Impacts of Urbanization on Eco-Efficiency in China," Land, MDPI, vol. 12(3), pages 1-14, March.
    5. Le Yang & Zhongqi Liang & Wentao Yao & Hongmin Zhu & Liangen Zeng & Zihan Zhao, 2023. "What Are the Impacts of Urbanisation on Carbon Emissions Efficiency? Evidence from Western China," Land, MDPI, vol. 12(9), pages 1-18, August.
    6. Jinxing Hu & Cuiying Shao & Zhaolong Zhang, 2022. "The Impact of Sustainable Regional Development Policy on Carbon Emissions: Evidence from Yangtze River Delta of China," Energies, MDPI, vol. 15(24), pages 1-25, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongtao Jiang & Jian Yin & Yuanhong Qiu & Bin Zhang & Yi Ding & Ruici Xia, 2022. "Industrial Carbon Emission Efficiency of Cities in the Pearl River Basin: Spatiotemporal Dynamics and Driving Forces," Land, MDPI, vol. 11(8), pages 1-22, July.
    2. Liu, Xiao & Hang, Ye & Wang, Qunwei & Chiu, Ching-Ren & Zhou, Dequn, 2022. "The role of energy consumption in global carbon intensity change: A meta-frontier-based production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 109(C).
    3. Liangen Zeng, 2022. "The Driving Mechanism of Urban Land Green Use Efficiency in China Based on the EBM Model with Undesirable Outputs and the Spatial Dubin Model," IJERPH, MDPI, vol. 19(17), pages 1-20, August.
    4. Liangen Zeng & Haitao Li & Xiao Wang & Zhao Yu & Haoyu Hu & Xinyue Yuan & Xuhai Zhao & Chengming Li & Dandan Yuan & Yukun Gao & Yang Nie & Liangzhen Huang, 2022. "China’s Transport Land: Spatiotemporal Expansion Characteristics and Driving Mechanism," Land, MDPI, vol. 11(8), pages 1-18, July.
    5. Le Yang & Zhongqi Liang & Wentao Yao & Hongmin Zhu & Liangen Zeng & Zihan Zhao, 2023. "What Are the Impacts of Urbanisation on Carbon Emissions Efficiency? Evidence from Western China," Land, MDPI, vol. 12(9), pages 1-18, August.
    6. Zhao, Mingxuan & Lv, Lianhong & Wu, Jing & Wang, Shen & Zhang, Nan & Bai, Zihan & Luo, Hong, 2022. "Total factor productivity of high coal-consuming industries and provincial coal consumption: Based on the dynamic spatial Durbin model," Energy, Elsevier, vol. 251(C).
    7. Anna M. Ferragina & Giulia Nunziante, 2018. "Are Italian firms performances influenced by innovation of domestic and foreign firms nearby in space and sectors?," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 45(3), pages 335-360, September.
    8. Yingcheng Li & Kai Zhu, 2017. "Spatial dependence and heterogeneity in the location processes of new high-tech firms in Nanjing, China," Papers in Regional Science, Wiley Blackwell, vol. 96(3), pages 519-535, August.
    9. Deslatte, Aaron & Szmigiel-Rawska, Katarzyna & Tavares, António F. & Ślawska, Justyna & Karsznia, Izabela & Łukomska, Julita, 2022. "Land use institutions and social-ecological systems: A spatial analysis of local landscape changes in Poland," Land Use Policy, Elsevier, vol. 114(C).
    10. Vicente Rios Ibañez, 2014. "What drives regional unemployment convergence?," ERSA conference papers ersa14p924, European Regional Science Association.
    11. Tomasz Kijek & Anna Matras-Bolibok, 2020. "Knowledge-intensive Specialisation and Total Factor Productivity (TFP) in the EU Regional Scope," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 68(1), pages 181-188.
    12. Burhan Can Karahasan & Firat Bilgel, 2018. "Economic Geography, Growth Dynamics and Human Capital Accumulation in Turkey: Evidence from Regional and Micro Data," Working Papers 1233, Economic Research Forum, revised 10 Oct 2018.
    13. Parent, Olivier & LeSage, James P., 2011. "A space-time filter for panel data models containing random effects," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 475-490, January.
    14. Liv Osland & Inge Thorsen, 2013. "Spatial Impacts, Local Labour Market Characteristics and Housing Prices," Urban Studies, Urban Studies Journal Limited, vol. 50(10), pages 2063-2083, August.
    15. Quentin Frère & Matthieu Leprince & Sonia Paty, 2014. "The Impact of Intermunicipal Cooperation on Local Public Spending," Urban Studies, Urban Studies Journal Limited, vol. 51(8), pages 1741-1760, June.
    16. Ruijing Zheng & Yu Cheng & Haimeng Liu & Wei Chen & Xiaodong Chen & Yaping Wang, 2022. "The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    17. Bottasso, Anna & Conti, Maurizio & Ferrari, Claudio & Tei, Alessio, 2014. "Ports and regional development: A spatial analysis on a panel of European regions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 65(C), pages 44-55.
    18. Ling Bai & Tianran Guo & Wei Xu & Kang Luo, 2022. "The Spatial Differentiation and Driving Forces of Ecological Welfare Performance in the Yangtze River Economic Belt," IJERPH, MDPI, vol. 19(22), pages 1-21, November.
    19. Behr, Andreas & Schiwy, Christoph & Hong, Lucy, 2022. "Impact of Agglomeration Economies on Regional Performance in Germany," Journal of Regional Analysis and Policy, Mid-Continent Regional Science Association, vol. 52(1), May.
    20. Pablo Argüelles & Luis Orea, 2021. "Managing power supply interruptions: a bottom-up spatial (frontier) model with an application to a Spanish electricity network," Empirical Economics, Springer, vol. 60(6), pages 2867-2896, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:8:p:1156-:d:872122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.