IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i5p619-d799434.html
   My bibliography  Save this article

Modeling the Future Tree Distribution in a South African Savanna Ecosystem: An Agent-Based Model Approach

Author

Listed:
  • Ulfia A. Lenfers

    (Department of Computer Science, Hamburg University of Applied Sciences, Berliner Tor 7, 20099 Hamburg, Germany)

  • Nima Ahmady-Moghaddam

    (Department of Computer Science, Hamburg University of Applied Sciences, Berliner Tor 7, 20099 Hamburg, Germany)

  • Daniel Glake

    (Department of Computer Science, Hamburg University of Applied Sciences, Berliner Tor 7, 20099 Hamburg, Germany)

  • Florian Ocker

    (Department of Computer Science, Hamburg University of Applied Sciences, Berliner Tor 7, 20099 Hamburg, Germany)

  • Julius Weyl

    (Department of Computer Science, Hamburg University of Applied Sciences, Berliner Tor 7, 20099 Hamburg, Germany)

  • Thomas Clemen

    (Department of Computer Science, Hamburg University of Applied Sciences, Berliner Tor 7, 20099 Hamburg, Germany)

Abstract

Understanding the dynamics of tree species and their demography is necessary for predicting future developments in savanna ecosystems. In this contribution, elephant-tree and firewood collector-tree interactions are compared using a multiagent model. To investigate these dynamics, we compared three different tree species in two plots. The first plot is located in the protected space of Kruger National Park (KNP), South Africa, and the second plot in the rural areas of the Bushbuckridge Municipality, South Africa. The agent-based modeling approach enabled the modeling of individual trees with characteristics such as species, age class, size, damage class, and life history. A similar level of detail was applied to agents that represent elephants and firewood collectors. Particular attention was paid to modeling purposeful behavior of humans in contrast to more instinct-driven actions of elephants. The authors were able to predict future developments by simulating the time period between 2010 and 2050 with more than 500,000 individual trees. Modeling individual trees for a time span of 40 years might yield more detailed information than a simple woody mass aggregation. The results indicate a significant trend toward more and thinner trees together with a notable reduction in mature trees, while the total aboveground biomass appears to stay more or less constant. Furthermore, the KNP scenarios show an increase in young Combretum apiculatum , which may correspond to bush encroachment.

Suggested Citation

  • Ulfia A. Lenfers & Nima Ahmady-Moghaddam & Daniel Glake & Florian Ocker & Julius Weyl & Thomas Clemen, 2022. "Modeling the Future Tree Distribution in a South African Savanna Ecosystem: An Agent-Based Model Approach," Land, MDPI, vol. 11(5), pages 1-24, April.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:5:p:619-:d:799434
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/5/619/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/5/619/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ian J. Wright & Peter B. Reich & Mark Westoby & David D. Ackerly & Zdravko Baruch & Frans Bongers & Jeannine Cavender-Bares & Terry Chapin & Johannes H. C. Cornelissen & Matthias Diemer & Jaume Flexas, 2004. "The worldwide leaf economics spectrum," Nature, Nature, vol. 428(6985), pages 821-827, April.
    2. Blanco, Carolina Casagrande & Scheiter, Simon & Sosinski, Enio & Fidelis, Alessandra & Anand, Madhur & Pillar, Valério D., 2014. "Feedbacks between vegetation and disturbance processes promote long-term persistence of forest–grassland mosaics in south Brazil," Ecological Modelling, Elsevier, vol. 291(C), pages 224-232.
    3. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    4. Scheiter, Simon & Schulte, Judith & Pfeiffer, Mirjam & Martens, Carola & Erasmus, Barend F.N. & Twine, Wayne C., 2019. "How Does Climate Change Influence the Economic Value of Ecosystem Services in Savanna Rangelands?," Ecological Economics, Elsevier, vol. 157(C), pages 342-356.
    5. Malte Meinshausen & S. Smith & K. Calvin & J. Daniel & M. Kainuma & J-F. Lamarque & K. Matsumoto & S. Montzka & S. Raper & K. Riahi & A. Thomson & G. Velders & D.P. Vuuren, 2011. "The RCP greenhouse gas concentrations and their extensions from 1765 to 2300," Climatic Change, Springer, vol. 109(1), pages 213-241, November.
    6. Christian Berger & Mari Bieri & Karen Bradshaw & Christian Brümmer & Thomas Clemen & Thomas Hickler & Werner Leo Kutsch & Ulfia A. Lenfers & Carola Martens & Guy F. Midgley & Kanisios Mukwashi & Victo, 2019. "Linking scales and disciplines: an interdisciplinary cross-scale approach to supporting climate-relevant ecosystem management," Climatic Change, Springer, vol. 156(1), pages 139-150, September.
    7. Matsika, R. & Erasmus, B.F.N. & Twine, W.C., 2013. "Double jeopardy: The dichotomy of fuelwood use in rural South Africa," Energy Policy, Elsevier, vol. 52(C), pages 716-725.
    8. Ulfia A. Lenfers & Julius Weyl & Thomas Clemen, 2018. "Firewood Collection in South Africa: Adaptive Behavior in Social-Ecological Models," Land, MDPI, vol. 7(3), pages 1-17, August.
    9. Liedloff, Adam C. & Cook, Garry D., 2007. "Modelling the effects of rainfall variability and fire on tree populations in an Australian tropical savanna with the Flames simulation model," Ecological Modelling, Elsevier, vol. 201(3), pages 269-282.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Berger & Mari Bieri & Karen Bradshaw & Christian Brümmer & Thomas Clemen & Thomas Hickler & Werner Leo Kutsch & Ulfia A. Lenfers & Carola Martens & Guy F. Midgley & Kanisios Mukwashi & Victo, 2019. "Linking scales and disciplines: an interdisciplinary cross-scale approach to supporting climate-relevant ecosystem management," Climatic Change, Springer, vol. 156(1), pages 139-150, September.
    2. Jagadish, Arundhati & Dwivedi, Puneet & McEntire, Kira D. & Chandar, Mamta, 2019. "Agent-based modeling of “cleaner” cookstove adoption and woodfuel use: An integrative empirical approach," Forest Policy and Economics, Elsevier, vol. 106(C), pages 1-1.
    3. Ulfia A. Lenfers & Julius Weyl & Thomas Clemen, 2018. "Firewood Collection in South Africa: Adaptive Behavior in Social-Ecological Models," Land, MDPI, vol. 7(3), pages 1-17, August.
    4. Petter, Gunnar & Kreft, Holger & Ong, Yongzhi & Zotz, Gerhard & Cabral, Juliano Sarmento, 2021. "Modelling the long-term dynamics of tropical forests: From leaf traits to whole-tree growth patterns," Ecological Modelling, Elsevier, vol. 460(C).
    5. Ulfia A. Lenfers & Nima Ahmady-Moghaddam & Daniel Glake & Florian Ocker & Daniel Osterholz & Jonathan Ströbele & Thomas Clemen, 2021. "Improving Model Predictions—Integration of Real-Time Sensor Data into a Running Simulation of an Agent-Based Model," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    6. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    7. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    8. Vimercati, Giovanni & Hui, Cang & Davies, Sarah J. & Measey, G. John, 2017. "Integrating age structured and landscape resistance models to disentangle invasion dynamics of a pond-breeding anuran," Ecological Modelling, Elsevier, vol. 356(C), pages 104-116.
    9. Eric W. Seabloom & Maria C. Caldeira & Kendi F. Davies & Linda Kinkel & Johannes M. H. Knops & Kimberly J. Komatsu & Andrew S. MacDougall & Georgiana May & Michael Millican & Joslin L. Moore & Luis I., 2023. "Globally consistent response of plant microbiome diversity across hosts and continents to soil nutrients and herbivores," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    11. Tianran Ding & Wouter Achten, 2023. "Coupling agent-based modeling with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/359527, ULB -- Universite Libre de Bruxelles.
    12. Jascha-Alexander Koch & Jens Lausen & Moritz Kohlhase, 2021. "Internalizing the externalities of overfunding: an agent-based model approach for analyzing the market dynamics on crowdfunding platforms," Journal of Business Economics, Springer, vol. 91(9), pages 1387-1430, November.
    13. Jiří Mikšovský & Rudolf Brázdil & Petr Štĕpánek & Pavel Zahradníček & Petr Pišoft, 2014. "Long-term variability of temperature and precipitation in the Czech Lands: an attribution analysis," Climatic Change, Springer, vol. 125(2), pages 253-264, July.
    14. Crevier, Lucas Phillip & Salkeld, Joseph H & Marley, Jessa & Parrott, Lael, 2021. "Making the best possible choice: Using agent-based modelling to inform wildlife management in small communities," Ecological Modelling, Elsevier, vol. 446(C).
    15. Wang, Junbo & Ma, Zhenyu & Fan, Xiayang, 2023. "We are all in the same boat: The welfare and carbon abatement effects of the EU carbon border adjustment mechanism," MPRA Paper 118978, University Library of Munich, Germany.
    16. David, Viviane & Joachim, Sandrine & Tebby, Cleo & Porcher, Jean-Marc & Beaudouin, Rémy, 2019. "Modelling population dynamics in mesocosms using an individual-based model coupled to a bioenergetics model," Ecological Modelling, Elsevier, vol. 398(C), pages 55-66.
    17. Tony E. Wong & Alexander M. R. Bakker & Klaus Keller, 2017. "Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense," Climatic Change, Springer, vol. 144(2), pages 347-364, September.
    18. Singh, Kuntal & McClean, Colin J. & Büker, Patrick & Hartley, Sue E. & Hill, Jane K., 2017. "Mapping regional risks from climate change for rainfed rice cultivation in India," Agricultural Systems, Elsevier, vol. 156(C), pages 76-84.
    19. Lorscheid, Iris & Meyer, Matthias, 2016. "Divide and conquer: Configuring submodels for valid and efficient analyses of complex simulation models," Ecological Modelling, Elsevier, vol. 326(C), pages 152-161.
    20. Moritz Kersting & Andreas Bossert & Leif Sörensen & Benjamin Wacker & Jan Chr. Schlüter, 2021. "Predicting effectiveness of countermeasures during the COVID-19 outbreak in South Africa using agent-based simulation," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:5:p:619-:d:799434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.