IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i1p101-d720238.html
   My bibliography  Save this article

Preliminary Model-Based Evaluation of Water Conservation Strategies in a Semi-Arid Urban Zone

Author

Listed:
  • Marcelino Antonio Zúñiga-Estrada

    (Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Km. 4.5 Carretera Pachuca-Tulancingo, Mineral de la Reforma 42086, Mexico)

  • Liliana Lizárraga-Mendiola

    (Área Académica de Ingeniería y Arquitectura, Mineral de la Reforma 42086, Mexico)

  • Carlos Alfredo Bigurra-Alzati

    (Área Académica de Ingeniería y Arquitectura, Mineral de la Reforma 42086, Mexico)

  • Sergio Esteban Aldana-Alonso

    (Laboratorio Nacional de Vivienda y Comunidades Sustentables, Sede Centro Universitario de Arte Arquitectura y Diseño, Universidad de Guadalajara, Calzada Independencia Nte. 5075, Huentitán El Bajo 44250, Mexico)

  • Jorge Santiago Ramírez-Núñez

    (Laboratorio Nacional de Vivienda y Comunidades Sustentables, Sede Centro Universitario de Arte Arquitectura y Diseño, Universidad de Guadalajara, Calzada Independencia Nte. 5075, Huentitán El Bajo 44250, Mexico)

  • Gabriela A. Vázquez-Rodríguez

    (Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Km. 4.5 Carretera Pachuca-Tulancingo, Mineral de la Reforma 42086, Mexico)

Abstract

The U.S. Environmental Protection Agency stormwater management model was applied to a semi-arid urban micro watershed. The sub-catchment’s current features were modeled as scenario A, while the insertion of a set of LID technologies (rain barrels, bioretention cells, permeable pavement, and infiltration trenches) was represented as scenario B. A third scenario (C), considering only the most feasible LID technologies, was also modeled. All the scenarios were evaluated under two representative storm events (30 and 9 mm in two consecutive days, and 39 mm of rainfall in one day) occurred during the sampling performed in this study. Water quality was also simulated for a 30-mm storm event and compared against field assessment results after a real 30-mm storm event. Through the model, the inefficiency of current evacuation methods after 30- and 39-mm storm events was demonstrated. Simulation of scenario B showed that LID technologies could satisfactorily diminish peak flows generated by the selected storm events as well as runoff-conveyed pollution, while the realistic scenario allowed a lower but satisfactory hydrological performance and almost the same runoff quality than scenario B. This preliminary study could contribute to spread awareness about the benefits of LID technologies in semi-arid urban areas of the developing world.

Suggested Citation

  • Marcelino Antonio Zúñiga-Estrada & Liliana Lizárraga-Mendiola & Carlos Alfredo Bigurra-Alzati & Sergio Esteban Aldana-Alonso & Jorge Santiago Ramírez-Núñez & Gabriela A. Vázquez-Rodríguez, 2022. "Preliminary Model-Based Evaluation of Water Conservation Strategies in a Semi-Arid Urban Zone," Land, MDPI, vol. 11(1), pages 1-20, January.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:1:p:101-:d:720238
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/1/101/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/1/101/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. L. Burrell & J. P. Evans & M. G. De Kauwe, 2020. "Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziyi Wang & Tingting Bai & Dong Xu & Juan Kang & Jian Shi & He Fang & Cong Nie & Zhijun Zhang & Peiwen Yan & Dingning Wang, 2022. "Temporal and Spatial Changes in Vegetation Ecological Quality and Driving Mechanism in Kökyar Project Area from 2000 to 2021," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
    2. Xunming Wang & Quansheng Ge & Xin Geng & Zhaosheng Wang & Lei Gao & Brett A. Bryan & Shengqian Chen & Yanan Su & Diwen Cai & Jiansheng Ye & Jimin Sun & Huayu Lu & Huizheng Che & Hong Cheng & Hongyan L, 2023. "Unintended consequences of combating desertification in China," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Carlos Martínez-Núñez & Ricardo Martínez-Prentice & Vicente García-Navas, 2023. "Land-use diversity predicts regional bird taxonomic and functional richness worldwide," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Sha Zhou & A. Park Williams & Benjamin R. Lintner & Kirsten L. Findell & Trevor F. Keenan & Yao Zhang & Pierre Gentine, 2022. "Diminishing seasonality of subtropical water availability in a warmer world dominated by soil moisture–atmosphere feedbacks," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Agúndez, Dolores & Lawali, Sitou & Mahamane, Ali & Alía, Ricardo & Soliño, Mario, 2022. "Development of agroforestry food resources in Niger: Are farmers’ preferences context specific?," World Development, Elsevier, vol. 157(C).
    6. Alary, Véronique & Lasseur, Jacques & Frija, Aymen & Gautier, Denis, 2022. "Assessing the sustainability of livestock socio-ecosystems in the drylands through a set of indicators," Agricultural Systems, Elsevier, vol. 198(C).
    7. Patrycjusz Zarębski & Vitaliy Krupin & Dominika Zwęglińska-Gałecka, 2021. "Renewable Energy Generation Gaps in Poland: The Role of Regional Innovation Systems and Knowledge Transfer," Energies, MDPI, vol. 14(10), pages 1-26, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:1:p:101-:d:720238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.