IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2022i1p606-d1019413.html
   My bibliography  Save this article

Evaluating the Comprehensive Benefit of Urban Renewal Projects on the Area Scale: An Integrated Method

Author

Listed:
  • Yizhong Chen

    (Civil Engineering Department, Yancheng Institute of Technology, Yancheng 224051, China)

  • Guiwen Liu

    (School of Management Science & Real Estate, Chongqing University, Chongqing 400045, China)

  • Taozhi Zhuang

    (School of Management Science & Real Estate, Chongqing University, Chongqing 400045, China)

Abstract

Globally, the challenges facing cities regarding urban decay, insufficient urban function, and fragmented urban development are enormous. Under this context, urban renewal provides opportunities to address these challenges and enhance urban sustainability. Thus, promoting urban renewal projects and improving their performance is a global topic. In many circumstances, urban renewal is planned and initiated on the project scale, but on the area scale, overall coordination of the projects can bring about comprehensive benefits to urban areas on a macro view. In practice, it still lacks a systematic evaluation approach to obtain a clear picture of such comprehensive benefits. In academia, the existing research studies are mainly focused on single-project evaluation. An integrated framework that provides a holistic assessment of area-scale project benefits is missing. Few fully consider the coupling coordination benefits between several urban renewal projects from an area-scale perspective. Thus, this paper aims to propose a framework for integrating an indicator evaluation system through a hybrid entropy weight method with Back Propagation (BP) neural network methods to evaluate the comprehensive benefit of urban renewal projects on the area scale, which is the level at which most development area-scale renewal projects take place in a city. The feasibility and effectiveness of this proposed framework are then verified in a case study of Chongqing, China. The results indicate that the proposed method that integrated multi-project characteristics can contribute to a bigger picture of benefit evaluation of urban renewal based on an area scale perspective. This therefore provides not only guidance for urban planners and policymakers to make better decisions, but also new insight for benefit evaluation in the field of urban development.

Suggested Citation

  • Yizhong Chen & Guiwen Liu & Taozhi Zhuang, 2022. "Evaluating the Comprehensive Benefit of Urban Renewal Projects on the Area Scale: An Integrated Method," IJERPH, MDPI, vol. 20(1), pages 1-20, December.
  • Handle: RePEc:gam:jijerp:v:20:y:2022:i:1:p:606-:d:1019413
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/1/606/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/1/606/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hu, Yusha & Li, Jigeng & Hong, Mengna & Ren, Jingzheng & Lin, Ruojue & Liu, Yue & Liu, Mengru & Man, Yi, 2019. "Short term electric load forecasting model and its verification for process industrial enterprises based on hybrid GA-PSO-BPNN algorithm—A case study of papermaking process," Energy, Elsevier, vol. 170(C), pages 1215-1227.
    2. Tao Zhou & Yulin Zhou & Guiwen Liu, 2017. "Key Variables for Decision-Making on Urban Renewal in China: A Case Study of Chongqing," Sustainability, MDPI, vol. 9(3), pages 1-19, March.
    3. Liu, Yilun & Zhu, A-Xing & Wang, Jingli & Li, Wenkai & Hu, Guohua & Hu, Yueming, 2019. "Land-use decision support in brownfield redevelopment for urban renewal based on crowdsourced data and a presence-and-background learning (PBL) method," Land Use Policy, Elsevier, vol. 88(C).
    4. Sun, Wei & Xu, Yanfeng, 2016. "Financial security evaluation of the electric power industry in China based on a back propagation neural network optimized by genetic algorithm," Energy, Elsevier, vol. 101(C), pages 366-379.
    5. Li, Dezhi & Du, Bingzhen & Zhu, Jin, 2021. "Evaluating old community renewal based on emergy analysis: A case study of Nanjing," Ecological Modelling, Elsevier, vol. 449(C).
    6. Lin, Sheng-Hau & Huang, Xianjin & Fu, Guole & Chen, Jia-Tsong & Zhao, Xiaofeng & Li, Jia-Hsuan & Tzeng, Gwo-Hshiung, 2021. "Evaluating the sustainability of urban renewal projects based on a model of hybrid multiple-attribute decision-making," Land Use Policy, Elsevier, vol. 108(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yawei Du & Qing Ye & Hongjiang Liu & Yuting Wu & Fenghua Wang, 2023. "Sustainable Assessment Tools for Higher Education Institutions: Developing Two-Hierarchy Tools for China," Sustainability, MDPI, vol. 15(15), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunxi Bai & Shanshan Wu & Yunjie Zhang, 2023. "Exploring the Key Factors Influencing Sustainable Urban Renewal from the Perspective of Multiple Stakeholders," Sustainability, MDPI, vol. 15(13), pages 1-21, July.
    2. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    3. Zonggui Yao & Chen Wang, 2018. "A Hybrid Model Based on A Modified Optimization Algorithm and An Artificial Intelligence Algorithm for Short-Term Wind Speed Multi-Step Ahead Forecasting," Sustainability, MDPI, vol. 10(5), pages 1-33, May.
    4. Simeng Li & Zhimin Liu & Chao Ye, 2022. "Community Renewal under Multi-Stakeholder Co-Governance: A Case Study of Shanghai’s Inner City," Sustainability, MDPI, vol. 14(9), pages 1-18, May.
    5. Zehua Wang & Fachao Liang & Sheng-Hau Lin, 2023. "Can socially sustainable development be achieved through homestead withdrawal? A hybrid multiple-attributes decision analysis," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-18, December.
    6. Zhou, Yulin & Lan, Feng & Zhou, Tao, 2021. "An experience-based mining approach to supporting urban renewal mode decisions under a multi-stakeholder environment in China," Land Use Policy, Elsevier, vol. 106(C).
    7. Can, Özer & Baklacioglu, Tolga & Özturk, Erkan & Turan, Onder, 2022. "Artificial neural networks modeling of combustion parameters for a diesel engine fueled with biodiesel fuel," Energy, Elsevier, vol. 247(C).
    8. Fang Dong & Jiyao Yin & Jirubin Xiang & Zhangyu Chang & Tiantian Gu & Feihu Han, 2023. "EWM-FCE-ODM-Based Evaluation of Smart Community Construction: From the Perspective of Residents’ Sense of Gain," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    9. Hu, Yusha & Man, Yi, 2023. "Energy consumption and carbon emissions forecasting for industrial processes: Status, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    10. Akhter, Muhammad Naveed & Mekhilef, Saad & Mokhlis, Hazlie & Ali, Raza & Usama, Muhammad & Muhammad, Munir Azam & Khairuddin, Anis Salwa Mohd, 2022. "A hybrid deep learning method for an hour ahead power output forecasting of three different photovoltaic systems," Applied Energy, Elsevier, vol. 307(C).
    11. Wang, Siqiang & Yung, Esther, Hiu Kwan & Yu, Yifan & Tsou, Jin Yeu, 2022. "Right to the city and community facility planning for elderly: The case of urban renewal district in Hong Kong," Land Use Policy, Elsevier, vol. 114(C).
    12. Shichao Huang & Jing Zhang & Yu He & Xiaofan Fu & Luqin Fan & Gang Yao & Yongjun Wen, 2022. "Short-Term Load Forecasting Based on the CEEMDAN-Sample Entropy-BPNN-Transformer," Energies, MDPI, vol. 15(10), pages 1-14, May.
    13. Hu, Yusha & Li, Jigeng & Hong, Mengna & Ren, Jingzheng & Lin, Ruojue & Liu, Yue & Liu, Mengru & Man, Yi, 2019. "Short term electric load forecasting model and its verification for process industrial enterprises based on hybrid GA-PSO-BPNN algorithm—A case study of papermaking process," Energy, Elsevier, vol. 170(C), pages 1215-1227.
    14. Giuntini, Lorenzo & Lamioni, Rachele & Linari, Luca & Saccomano, Pietro & Mainardi, Davide & Tognotti, Leonardo & Galletti, Chiara, 2022. "Decarbonization of a tissue paper plant: Advanced numerical simulations to assess the replacement of fossil fuels with a biomass-derived syngas," Renewable Energy, Elsevier, vol. 198(C), pages 884-893.
    15. Hu, Yusha & Man, Yi, 2022. "Two-stage energy scheduling optimization model for complex industrial process and its industrial verification," Renewable Energy, Elsevier, vol. 193(C), pages 879-894.
    16. Hu, Yusha & Li, Jigeng & Hong, Mengna & Ren, Jingzheng & Man, Yi, 2022. "Industrial artificial intelligence based energy management system: Integrated framework for electricity load forecasting and fault prediction," Energy, Elsevier, vol. 244(PB).
    17. Talaat, M. & Farahat, M.A. & Mansour, Noura & Hatata, A.Y., 2020. "Load forecasting based on grasshopper optimization and a multilayer feed-forward neural network using regressive approach," Energy, Elsevier, vol. 196(C).
    18. Zhang, Dongxue & Wang, Shuai & Liang, Yuqiu & Du, Zhiyuan, 2023. "A novel combined model for probabilistic load forecasting based on deep learning and improved optimizer," Energy, Elsevier, vol. 264(C).
    19. Lai, Changzhi & Wang, Yu & Fan, Kai & Cai, Qilin & Ye, Qing & Pang, Haoqiang & Wu, Xi, 2022. "An improved forecasting model of short-term electric load of papermaking enterprises for production line optimization," Energy, Elsevier, vol. 245(C).
    20. Su, Qingyu & Chen, Cong & Huang, Xin & Li, Jian, 2022. "Interval TrendRank method for grid node importance assessment considering new energy," Applied Energy, Elsevier, vol. 324(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2022:i:1:p:606-:d:1019413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.