IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i5p2291-d506120.html
   My bibliography  Save this article

Cultivation of the Acidophilic Microalgae Galdieria phlegrea with Wastewater: Process Yields

Author

Listed:
  • Maria Rosa di Cicco

    (Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy)

  • Maria Palmieri

    (Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy)

  • Simona Altieri

    (Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy)

  • Claudia Ciniglia

    (Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy)

  • Carmine Lubritto

    (Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
    INFN—Sezione di Napoli, Complesso Universitario di Monte S, 80126 Napoli, Italy)

Abstract

Algal based wastewater treatment offers the opportunity to recover, in the form of biomass, the nutrients and internal chemical energy of wastewater. Recently, there has been a growing interest in the use of extremophilic microalgae, as they can easily adapt to difficult and often pollutant-rich environments. The thermo-acidophilic microalga Galdieria phlegrea is a species of recent discovery and great metabolic versatility, but it has still been poorly studied. Here, G. phlegrea was cultivated using raw municipal wastewater in 1 L Erlenmeyer flasks with 700 mL working volume at 37 °C for up to nine days. During the cultivation phase, biomass growth, phycocyanin content, ammonium and phosphate removal from the wastewater, lipid fraction, total carbon and nitrogen in the biomass, and variation in δ 13 C and δ 15 N isotopic ratios (a novel analytical contribution in these experiments) were monitored. Results indicated that G. phlegrea was able to grow in raw effluent, where it removed more than 50% ammonium and 20% phosphate in 24 h; total lipid content was in the range of 11–22%, while average C-N content was of 45% and 6%, respectively; isotopic analyses proved to be a useful support in identifying C and N metabolic pathways from effluent to biomass. Overall, G. phlegrea showed consistent performance with similar Cyanidiophyceae and is a potentially viable candidate for municipal wastewater valorization from a circular economy perspective.

Suggested Citation

  • Maria Rosa di Cicco & Maria Palmieri & Simona Altieri & Claudia Ciniglia & Carmine Lubritto, 2021. "Cultivation of the Acidophilic Microalgae Galdieria phlegrea with Wastewater: Process Yields," IJERPH, MDPI, vol. 18(5), pages 1-16, February.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:5:p:2291-:d:506120
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/5/2291/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/5/2291/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ferreira, G.F. & Ríos Pinto, L.F. & Maciel Filho, R. & Fregolente, L.V., 2019. "A review on lipid production from microalgae: Association between cultivation using waste streams and fatty acid profiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 448-466.
    2. Cabanelas, Iago Teles Dominguez & Arbib, Zouhayr & Chinalia, Fábio A. & Souza, Carolina Oliveira & Perales, José A. & Almeida, Paulo Fernando & Druzian, Janice Izabel & Nascimento, Iracema Andrade, 2013. "From waste to energy: Microalgae production in wastewater and glycerol," Applied Energy, Elsevier, vol. 109(C), pages 283-290.
    3. Selvaratnam, Thinesh & Pegallapati, Ambica & Montelya, Felly & Rodriguez, Gabriela & Nirmalakhandan, Nagamany & Lammers, Peter J. & van Voorhies, Wayne, 2015. "Feasibility of algal systems for sustainable wastewater treatment," Renewable Energy, Elsevier, vol. 82(C), pages 71-76.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hannah B. Rappaport & Angela M. Oliverio, 2023. "Extreme environments offer an unprecedented opportunity to understand microbial eukaryotic ecology, evolution, and genome biology," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hussain, Fida & Shah, Syed Z. & Ahmad, Habib & Abubshait, Samar A. & Abubshait, Haya A. & Laref, A. & Manikandan, A. & Kusuma, Heri S. & Iqbal, Munawar, 2021. "Microalgae an ecofriendly and sustainable wastewater treatment option: Biomass application in biofuel and bio-fertilizer production. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Lim, Juin Yau & Teng, Sin Yong & How, Bing Shen & Nam, KiJeon & Heo, SungKu & Máša, Vítězslav & Stehlík, Petr & Yoo, Chang Kyoo, 2022. "From microalgae to bioenergy: Identifying optimally integrated biorefinery pathways and harvest scheduling under uncertainties in predicted climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Selvaratnam, T. & Henkanatte-Gedera, S.M. & Muppaneni, T. & Nirmalakhandan, N. & Deng, S. & Lammers, P.J., 2016. "Maximizing recovery of energy and nutrients from urban wastewaters," Energy, Elsevier, vol. 104(C), pages 16-23.
    4. Cremonez, Paulo André & Feroldi, Michael & de Araújo, Amanda Viana & Negreiros Borges, Maykon & Weiser Meier, Thompson & Feiden, Armin & Gustavo Teleken, Joel, 2015. "Biofuels in Brazilian aviation: Current scenario and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1063-1072.
    5. Nugroho Adi Sasongko & Ryozo Noguchi & Junko Ito & Mikihide Demura & Sosaku Ichikawa & Mitsutoshi Nakajima & Makoto M. Watanabe, 2018. "Engineering Study of a Pilot Scale Process Plant for Microalgae-Oil Production Utilizing Municipal Wastewater and Flue Gases: Fukushima Pilot Plant," Energies, MDPI, vol. 11(7), pages 1-24, June.
    6. Amarnath Krishnamoorthy & Cristina Rodriguez & Andy Durrant, 2022. "Sustainable Approaches to Microalgal Pre-Treatment Techniques for Biodiesel Production: A Review," Sustainability, MDPI, vol. 14(16), pages 1-30, August.
    7. Singh, Shuchi & Khanna, Swati & Moholkar, Vijayanand S. & Goyal, Arun, 2014. "Screening and optimization of pretreatments for Parthenium hysterophorus as feedstock for alcoholic biofuels," Applied Energy, Elsevier, vol. 129(C), pages 195-206.
    8. Sandra Lage & Zivan Gojkovic & Christiane Funk & Francesco G. Gentili, 2018. "Algal Biomass from Wastewater and Flue Gases as a Source of Bioenergy," Energies, MDPI, vol. 11(3), pages 1-30, March.
    9. Behera, Bunushree & Unpaprom, Yuwalee & Ramaraj, Rameshprabu & Maniam, Gaanty Pragas & Govindan, Natanamurugaraj & Paramasivan, Balasubramanian, 2021. "Integrated biomolecular and bioprocess engineering strategies for enhancing the lipid yield from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    10. Chen, Guanyi & Zhao, Liu & Qi, Yun, 2015. "Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: A critical review," Applied Energy, Elsevier, vol. 137(C), pages 282-291.
    11. Abreu, Ana P. & Morais, Rui C. & Teixeira, José A. & Nunes, João, 2022. "A comparison between microalgal autotrophic growth and metabolite accumulation with heterotrophic, mixotrophic and photoheterotrophic cultivation modes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    12. Selvaratnam, Thinesh & Pegallapati, Ambica & Montelya, Felly & Rodriguez, Gabriela & Nirmalakhandan, Nagamany & Lammers, Peter J. & van Voorhies, Wayne, 2015. "Feasibility of algal systems for sustainable wastewater treatment," Renewable Energy, Elsevier, vol. 82(C), pages 71-76.
    13. Leong, Wai-Hong & Lim, Jun-Wei & Lam, Man-Kee & Uemura, Yoshimitsu & Ho, Yeek-Chia, 2018. "Third generation biofuels: A nutritional perspective in enhancing microbial lipid production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 950-961.
    14. Chu, Ruoyu & Li, Shuangxi & Zhu, Liandong & Yin, Zhihong & Hu, Dan & Liu, Chenchen & Mo, Fan, 2021. "A review on co-cultivation of microalgae with filamentous fungi: Efficient harvesting, wastewater treatment and biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    15. Cheah, Wai Yan & Ling, Tau Chuan & Show, Pau Loke & Juan, Joon Ching & Chang, Jo-Shu & Lee, Duu-Jong, 2016. "Cultivation in wastewaters for energy: A microalgae platform," Applied Energy, Elsevier, vol. 179(C), pages 609-625.
    16. Maranduba, Henrique Leonardo & Robra, Sabine & Nascimento, Iracema Andrade & da Cruz, Rosenira Serpa & Rodrigues, Luciano Brito & Almeida Neto, José Adolfo de, 2016. "Improving the energy balance of microalgae biodiesel: Synergy with an autonomous sugarcane ethanol distillery," Energy, Elsevier, vol. 115(P1), pages 888-895.
    17. Moon, Myounghoon & Park, Won-Kun & Lee, Soo Youn & Hwang, Kyung-Ran & Lee, Sangmin & Kim, Min-Sik & Kim, Bolam & Oh, You-Kwan & Lee, Jin-Suk, 2022. "Utilization of whole microalgal biomass for advanced biofuel and biorefinery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    18. Dragone, Giuliano, 2022. "Challenges and opportunities to increase economic feasibility and sustainability of mixotrophic cultivation of green microalgae of the genus Chlorella," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    19. Violeta Makareviciene & Egle Sendzikiene, 2022. "Application of Microalgae Biomass for Biodiesel Fuel Production," Energies, MDPI, vol. 15(11), pages 1-33, June.
    20. Elena Spennati & Alessandro Alberto Casazza & Attilio Converti, 2020. "Winery Wastewater Treatment by Microalgae to Produce Low-Cost Biomass for Energy Production Purposes," Energies, MDPI, vol. 13(10), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:5:p:2291-:d:506120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.