IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v160y2022ics1364032122001903.html
   My bibliography  Save this article

Utilization of whole microalgal biomass for advanced biofuel and biorefinery applications

Author

Listed:
  • Moon, Myounghoon
  • Park, Won-Kun
  • Lee, Soo Youn
  • Hwang, Kyung-Ran
  • Lee, Sangmin
  • Kim, Min-Sik
  • Kim, Bolam
  • Oh, You-Kwan
  • Lee, Jin-Suk

Abstract

To address issues related to climate crises, microalgae-based biofuels are considered a promising option for reducing carbon dioxide emissions in the transportation sector. However, despite extensive research conducted over the past 20 years, there are major limitations in the application of conventional algal biodiesel, such as the instability of oxygen-containing fuel, blending wall limitations (less than 20%), and poor cost competitiveness. Recently, biomass-based renewable hydrocarbon fuels (drop-in biofuels) have been considered technologically competitive alternatives to petrofuels owing to the advantages of carbon dioxide reduction, high energy density, and compatibility with existing infrastructure. This review discusses the integrative utilization of whole algal biomass for the development of an advanced algal biorefinery process that could strategically help produce drop-in biofuels and multiple by-products to meet the growing fuel demand and secure economic feasibility. This review provides an updated overview of recent technical advancements in the (1) mass cultivation of oleaginous algal biomass obtained from industrial wastes, (2) production of renewable biodiesel and bio-jet fuel using algal lipids via catalytic upgrading, and (3) diversification of bio-products generated from residual lipid-extracted biomass, such as hydrogen, methane, alcohols, bio-oils, organic acids, biosorbents, biomaterials, and nutrients. The challenges and prospects for practical application are discussed along with the major constraints on the commercialization of integrative algal biorefining.

Suggested Citation

  • Moon, Myounghoon & Park, Won-Kun & Lee, Soo Youn & Hwang, Kyung-Ran & Lee, Sangmin & Kim, Min-Sik & Kim, Bolam & Oh, You-Kwan & Lee, Jin-Suk, 2022. "Utilization of whole microalgal biomass for advanced biofuel and biorefinery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
  • Handle: RePEc:eee:rensus:v:160:y:2022:i:c:s1364032122001903
    DOI: 10.1016/j.rser.2022.112269
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122001903
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112269?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gutiérrez-Antonio, C. & Gómez-Castro, F.I. & de Lira-Flores, J.A. & Hernández, S., 2017. "A review on the production processes of renewable jet fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 709-729.
    2. Bohutskyi, Pavlo & Chow, Steven & Ketter, Ben & Betenbaugh, Michael J. & Bouwer, Edward J., 2015. "Prospects for methane production and nutrient recycling from lipid extracted residues and whole Nannochloropsis salina using anaerobic digestion," Applied Energy, Elsevier, vol. 154(C), pages 718-731.
    3. Xu, Donghai & Lin, Guike & Guo, Shuwei & Wang, Shuzhong & Guo, Yang & Jing, Zefeng, 2018. "Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 103-118.
    4. Kim, Tae-Hyoung & Lee, Kyungho & Oh, Baek-Rock & Lee, Mi-Eun & Seo, Minji & Li, Sheng & Kim, Jae-Kon & Choi, Minkee & Chang, Yong Keun, 2021. "A novel process for the coproduction of biojet fuel and high-value polyunsaturated fatty acid esters from heterotrophic microalgae Schizochytrium sp. ABC101," Renewable Energy, Elsevier, vol. 165(P1), pages 481-490.
    5. Cruce, Jesse R. & Quinn, Jason C., 2019. "Economic viability of multiple algal biorefining pathways and the impact of public policies," Applied Energy, Elsevier, vol. 233, pages 735-746.
    6. Bwapwa, Joseph K. & Anandraj, Akash & Trois, Cristina, 2017. "Possibilities for conversion of microalgae oil into aviation fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1345-1354.
    7. Yang, Xiaoyi & Guo, Fang & Xue, Song & Wang, Xin, 2016. "Carbon distribution of algae-based alternative aviation fuel obtained by different pathways," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1129-1147.
    8. Ayala-Parra, Pedro & Liu, Yuanzhe & Field, Jim A. & Sierra-Alvarez, Reyes, 2017. "Nutrient recovery and biogas generation from the anaerobic digestion of waste biomass from algal biofuel production," Renewable Energy, Elsevier, vol. 108(C), pages 410-416.
    9. Raheem, Abdul & Wan Azlina, W.A.K.G. & Taufiq Yap, Y.H. & Danquah, Michael K. & Harun, Razif, 2015. "Thermochemical conversion of microalgal biomass for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 990-999.
    10. Alherbawi, Mohammad & McKay, Gordon & Mackey, Hamish R. & Al-Ansari, Tareq, 2021. "Jatropha curcas for jet biofuel production: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Barbera, Elena & Bertucco, Alberto & Kumar, Sandeep, 2018. "Nutrients recovery and recycling in algae processing for biofuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 28-42.
    12. Katiyar, Richa & Bharti, Randhir K. & Gurjar, B.R. & Kumar, Amit & Biswas, Shalini & Pruthi, Vikas, 2018. "Utilization of de-oiled algal biomass for enhancing vehicular quality biodiesel production from Chlorella sp. in mixotrophic cultivation systems," Renewable Energy, Elsevier, vol. 122(C), pages 80-88.
    13. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    14. Yang, Zhiman & Guo, Rongbo & Xu, Xiaohui & Fan, Xiaolei & Luo, Shengjun, 2011. "Fermentative hydrogen production from lipid-extracted microalgal biomass residues," Applied Energy, Elsevier, vol. 88(10), pages 3468-3472.
    15. Sánchez-Bayo, Alejandra & López-Chicharro, Daniel & Morales, Victoria & Espada, Juan José & Puyol, Daniel & Martínez, Fernando & Astals, Sergi & Vicente, Gemma & Bautista, Luis Fernando & Rodríguez, R, 2020. "Biodiesel and biogas production from Isochrysis galbana using dry and wet lipid extraction: A biorefinery approach," Renewable Energy, Elsevier, vol. 146(C), pages 188-195.
    16. Li, Xingyong & Chen, Yubao & Hao, Yajie & Zhang, Xu & Du, Junchen & Zhang, Aimin, 2019. "Optimization of aviation kerosene from one-step hydrotreatment of catalytic Jatropha oil over SDBS-Pt/SAPO-11 by response surface methodology," Renewable Energy, Elsevier, vol. 139(C), pages 551-559.
    17. Staples, Mark D. & Malina, Robert & Suresh, Pooja & Hileman, James I. & Barrett, Steven R.H., 2018. "Aviation CO2 emissions reductions from the use of alternative jet fuels," Energy Policy, Elsevier, vol. 114(C), pages 342-354.
    18. Meneses-Reyes, José Carlos & Hernández-Eugenio, Guadalupe & Huber, David H. & Balagurusamy, Nagamani & Espinosa-Solares, Teodoro, 2018. "Oil-extracted Chlorella vulgaris biomass and glycerol bioconversion to methane via continuous anaerobic co-digestion with chicken litter," Renewable Energy, Elsevier, vol. 128(PA), pages 223-229.
    19. Barbera, Elena & Naurzaliyev, Rustem & Asiedu, Alexander & Bertucco, Alberto & Resurreccion, Eleazer P. & Kumar, Sandeep, 2020. "Techno-economic analysis and life-cycle assessment of jet fuels production from waste cooking oil via in situ catalytic transfer hydrogenation," Renewable Energy, Elsevier, vol. 160(C), pages 428-449.
    20. Sanghyun Park & Yongtae Ahn & Kalimuthu Pandi & Min-Kyu Ji & Hyun-Shik Yun & Jae-Young Choi, 2019. "Microalgae Cultivation in Pilot Scale for Biomass Production Using Exhaust Gas from Thermal Power Plants," Energies, MDPI, vol. 12(18), pages 1-10, September.
    21. Sun, Chi-He & Fu, Qian & Liao, Qiang & Xia, Ao & Huang, Yun & Zhu, Xun & Reungsang, Alissara & Chang, Hai-Xing, 2019. "Life-cycle assessment of biofuel production from microalgae via various bioenergy conversion systems," Energy, Elsevier, vol. 171(C), pages 1033-1045.
    22. Ashokkumar, Veeramuthu & Chen, Wei-Hsin & Kamyab, Hesam & Kumar, Gopalakrishnan & Al-Muhtaseb, Ala'a H. & Ngamcharussrivichai, Chawalit, 2019. "Cultivation of microalgae Chlorella sp. in municipal sewage for biofuel production and utilization of biochar derived from residue for the conversion of hematite iron ore (Fe2O3) to iron (Fe) – Integr," Energy, Elsevier, vol. 189(C).
    23. Capson-Tojo, Gabriel & Torres, Alvaro & Muñoz, Raúl & Bartacek, Jan & Jeison, David, 2017. "Mesophilic and thermophilic anaerobic digestion of lipid-extracted microalgae N. gaditana for methane production," Renewable Energy, Elsevier, vol. 105(C), pages 539-546.
    24. Selvaratnam, Thinesh & Pegallapati, Ambica & Montelya, Felly & Rodriguez, Gabriela & Nirmalakhandan, Nagamany & Lammers, Peter J. & van Voorhies, Wayne, 2015. "Feasibility of algal systems for sustainable wastewater treatment," Renewable Energy, Elsevier, vol. 82(C), pages 71-76.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Usman & Shuo Cheng & Sasipa Boonyubol & Jeffrey S. Cross, 2023. "Evaluating Green Solvents for Bio-Oil Extraction: Advancements, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(15), pages 1-45, August.
    2. Gabriela Lisa & Ion Anghel & Dana-Maria Preda & Catalin Lisa & Igor Cretescu & Ingrid Ioana Buciscanu & Mariana Diaconu & Gabriela Soreanu, 2022. "Moving towards Valorization of Biowastes Issued from Biotrickling Filtration of Contaminated Gaseous Streams: A Thermochemical Analysis-Based Perspective," Sustainability, MDPI, vol. 14(17), pages 1-11, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    2. Prussi, M. & Weindorf, W. & Buffi, M. & Sánchez López, J. & Scarlat, N., 2021. "Are algae ready to take off? GHG emission savings of algae-to-kerosene production," Applied Energy, Elsevier, vol. 304(C).
    3. Hansen, Samuel & Mirkouei, Amin & Diaz, Luis A., 2020. "A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    4. Alherbawi, Mohammad & McKay, Gordon & Mackey, Hamish R. & Al-Ansari, Tareq, 2021. "Jatropha curcas for jet biofuel production: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Lim, Jackson Hwa Keen & Gan, Yong Yang & Ong, Hwai Chyuan & Lau, Beng Fye & Chen, Wei-Hsin & Chong, Cheng Tung & Ling, Tau Chuan & Klemeš, Jiří Jaromír, 2021. "Utilization of microalgae for bio-jet fuel production in the aviation sector: Challenges and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    6. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Gunerhan, Ali & Altuntas, Onder & Caliskan, Hakan, 2023. "Utilization of renewable and sustainable aviation biofuels from waste tyres for sustainable aviation transport sector," Energy, Elsevier, vol. 276(C).
    8. Neves, Viviane T. de C. & Sales, Emerson Andrade & Perelo, Louisa W., 2016. "Influence of lipid extraction methods as pre-treatment of microalgal biomass for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 160-165.
    9. Barbera, Elena & Bertucco, Alberto & Kumar, Sandeep, 2018. "Nutrients recovery and recycling in algae processing for biofuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 28-42.
    10. Verma, Vikas & Mishra, Ankit & Anand, Mohit & Farooqui, Saleem Akhtar & Sinha, Anil Kumar, 2022. "Catalytic hydrocracking of inedible palm stearin for the production of drop-in aviation fuel and comparison with other inedible oils," Renewable Energy, Elsevier, vol. 199(C), pages 1440-1450.
    11. Huang, Endai & Zhang, Xiaolei & Rodriguez, Luis & Khanna, Madhu & de Jong, Sierk & Ting, K.C. & Ying, Yibin & Lin, Tao, 2019. "Multi-objective optimization for sustainable renewable jet fuel production: A case study of corn stover based supply chain system in Midwestern U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    12. Qiu, Rui & Hou, Shuhua & Meng, Zhiyi, 2021. "Low carbon air transport development trends and policy implications based on a scientometrics-based data analysis system," Transport Policy, Elsevier, vol. 107(C), pages 1-10.
    13. Sandra Lage & Zivan Gojkovic & Christiane Funk & Francesco G. Gentili, 2018. "Algal Biomass from Wastewater and Flue Gases as a Source of Bioenergy," Energies, MDPI, vol. 11(3), pages 1-30, March.
    14. Yang, Qiulian & Li, Haitao & Wang, Dong & Zhang, Xiaochun & Guo, Xiangqian & Pu, Shaochen & Guo, Ruixin & Chen, Jianqiu, 2020. "Utilization of chemical wastewater for CO2 emission reduction: Purified terephthalic acid (PTA) wastewater-mediated culture of microalgae for CO2 bio-capture," Applied Energy, Elsevier, vol. 276(C).
    15. Chiaramonti, David & Prussi, Matteo & Buffi, Marco & Rizzo, Andrea Maria & Pari, Luigi, 2017. "Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production," Applied Energy, Elsevier, vol. 185(P2), pages 963-972.
    16. Cuevas-Castillo, Gabriela A. & Navarro-Pineda, Freddy S. & Baz Rodríguez, Sergio A. & Sacramento Rivero, Julio C., 2020. "Advances on the processing of microalgal biomass for energy-driven biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    17. Escalante, Edwin Santiago Rios & Ramos, Luth Silva & Rodriguez Coronado, Christian J. & de Carvalho Júnior, João Andrade, 2022. "Evaluation of the potential feedstock for biojet fuel production: Focus in the Brazilian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    18. Marcin Dębowski & Marcin Zieliński & Joanna Kazimierowicz & Natalia Kujawska & Szymon Talbierz, 2020. "Microalgae Cultivation Technologies as an Opportunity for Bioenergetic System Development—Advantages and Limitations," Sustainability, MDPI, vol. 12(23), pages 1-37, November.
    19. Marinič, Dana & Grilc, Miha & Hočevar, Brigita & Delrue, Florian & Likozar, Blaž, 2023. "Liquefaction, cracking and hydrogenation of microalgae biomass resources to CO2 negative advanced biofuels: Mechanisms, reaction microkinetics and modelling," Renewable Energy, Elsevier, vol. 203(C), pages 382-393.
    20. O’Connell, Adrian & Kousoulidou, Marina & Lonza, Laura & Weindorf, Werner, 2019. "Considerations on GHG emissions and energy balances of promising aviation biofuel pathways," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 504-515.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:160:y:2022:i:c:s1364032122001903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.