IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v108y2017icp410-416.html
   My bibliography  Save this article

Nutrient recovery and biogas generation from the anaerobic digestion of waste biomass from algal biofuel production

Author

Listed:
  • Ayala-Parra, Pedro
  • Liu, Yuanzhe
  • Field, Jim A.
  • Sierra-Alvarez, Reyes

Abstract

Microalgae are gaining popularity as a source of biodiesel. Recycling fertilizer nutrients is critical to sustain large-scale biodiesel production because the global supply of surplus fertilizer is limited. This study demonstrates that anaerobic digestion of residual algal biomass from biodiesel production can provide additional nutrients and energy. Anaerobic digestion of Chlorella sorokiniana 1412 whole cell algae (WCA), sonicated algae (SA), and SA subjected to lipid extraction (LEA) in bench-scale batch reactors operated at 30 ± 2 °C for 42 days released a considerable amount of the nitrogen and phosphorus in the algal cells. Digestion of WCA, SA, LEA released 48.1, 77.4, and 61.5% of the total algal nitrogen as NH4+-N, and 87.7, 99.4, and 93.6% of the total algal P as soluble P, respectively. The energy recovery from algae biomass was quantified through the methane yield. The biochemical methane potential of WCA, SA and LEA was 0.298, 0.388 and 0.253 L methane per gram algal volatile solids, respectively. The conversion of LEA and WCA biomass to methane was very similar (38 and 41% on a COD basis, respectively), indicating that the energy yield was not significantly lowered by extraction of the lipid fraction (which accounted for 9% of algal dry weight). Sonication improved the access of hydrolytic enzymes to algal biopolymers (compensating in part for the energy lost due to lipid extraction). The results taken as a whole indicate that anaerobic digestion of LEA can provide considerable yields of methane and soluble nutrients.

Suggested Citation

  • Ayala-Parra, Pedro & Liu, Yuanzhe & Field, Jim A. & Sierra-Alvarez, Reyes, 2017. "Nutrient recovery and biogas generation from the anaerobic digestion of waste biomass from algal biofuel production," Renewable Energy, Elsevier, vol. 108(C), pages 410-416.
  • Handle: RePEc:eee:renene:v:108:y:2017:i:c:p:410-416
    DOI: 10.1016/j.renene.2017.02.085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117301775
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.02.085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bohutskyi, Pavlo & Chow, Steven & Ketter, Ben & Betenbaugh, Michael J. & Bouwer, Edward J., 2015. "Prospects for methane production and nutrient recycling from lipid extracted residues and whole Nannochloropsis salina using anaerobic digestion," Applied Energy, Elsevier, vol. 154(C), pages 718-731.
    2. Canter, Christina E. & Blowers, Paul & Handler, Robert M. & Shonnard, David R., 2015. "Implications of widespread algal biofuels production on macronutrient fertilizer supplies: Nutrient demand and evaluation of potential alternate nutrient sources," Applied Energy, Elsevier, vol. 143(C), pages 71-80.
    3. Ahmad, A.L. & Yasin, N.H. Mat & Derek, C.J.C. & Lim, J.K., 2011. "Microalgae as a sustainable energy source for biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 584-593, January.
    4. Mendez, Lara & Mahdy, Ahmed & Ballesteros, Mercedes & González-Fernández, Cristina, 2014. "Methane production of thermally pretreated Chlorella vulgaris and Scenedesmus sp. biomass at increasing biomass loads," Applied Energy, Elsevier, vol. 129(C), pages 238-242.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barbera, Elena & Bertucco, Alberto & Kumar, Sandeep, 2018. "Nutrients recovery and recycling in algae processing for biofuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 28-42.
    2. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    3. Merrylin Jayaseelan & Mohamed Usman & Adishkumar Somanathan & Sivashanmugam Palani & Gunasekaran Muniappan & Rajesh Banu Jeyakumar, 2021. "Microalgal Production of Biofuels Integrated with Wastewater Treatment," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    4. Michelle Dias Hornes da Rosa & Cristina Jansen Alves & Felipe Nardo dos Santos & Alexander Ossanes de Souza & Elessandra da Rosa Zavareze & Ernani Pinto & Miguel Daniel Noseda & Daniela Ramos & Cláudi, 2023. "Macroalgae and Microalgae Biomass as Feedstock for Products Applied to Bioenergy and Food Industry: A Brief Review," Energies, MDPI, vol. 16(4), pages 1-14, February.
    5. Moon, Myounghoon & Park, Won-Kun & Lee, Soo Youn & Hwang, Kyung-Ran & Lee, Sangmin & Kim, Min-Sik & Kim, Bolam & Oh, You-Kwan & Lee, Jin-Suk, 2022. "Utilization of whole microalgal biomass for advanced biofuel and biorefinery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    6. Marcin Dębowski & Marcin Zieliński & Joanna Kazimierowicz & Natalia Kujawska & Szymon Talbierz, 2020. "Microalgae Cultivation Technologies as an Opportunity for Bioenergetic System Development—Advantages and Limitations," Sustainability, MDPI, vol. 12(23), pages 1-37, November.
    7. Vieira de Mendonça, Henrique & Assemany, Paula & Abreu, Mariana & Couto, Eduardo & Maciel, Alyne Martins & Duarte, Renata Lopes & Barbosa dos Santos, Marcela Granato & Reis, Alberto, 2021. "Microalgae in a global world: New solutions for old problems?," Renewable Energy, Elsevier, vol. 165(P1), pages 842-862.
    8. Raquel Iglesias & Raúl Muñoz & María Polanco & Israel Díaz & Ana Susmozas & Antonio D. Moreno & María Guirado & Nely Carreras & Mercedes Ballesteros, 2021. "Biogas from Anaerobic Digestion as an Energy Vector: Current Upgrading Development," Energies, MDPI, vol. 14(10), pages 1-30, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbera, Elena & Bertucco, Alberto & Kumar, Sandeep, 2018. "Nutrients recovery and recycling in algae processing for biofuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 28-42.
    2. Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
    3. Cao, Yan & Doustgani, Amir & Salehi, Abozar & Nemati, Mohammad & Ghasemi, Amir & Koohshekan, Omid, 2020. "The economic evaluation of establishing a plant for producing biodiesel from edible oil wastes in oil-rich countries: Case study Iran," Energy, Elsevier, vol. 213(C).
    4. Bharathiraja, B. & Chakravarthy, M. & Ranjith Kumar, R. & Yogendran, D. & Yuvaraj, D. & Jayamuthunagai, J. & Praveen Kumar, R. & Palani, S., 2015. "Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 634-653.
    5. Mandolesi de Araújo, Carlos Daniel & de Andrade, Claudia Cristina & de Souza e Silva, Erika & Dupas, Francisco Antonio, 2013. "Biodiesel production from used cooking oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 445-452.
    6. Lee, Jongkeun & Lee, Kwanyong & Sohn, Donghwan & Kim, Young Mo & Park, Ki Young, 2018. "Hydrothermal carbonization of lipid extracted algae for hydrochar production and feasibility of using hydrochar as a solid fuel," Energy, Elsevier, vol. 153(C), pages 913-920.
    7. Krishnan, Sooridarsan & Ghani, Noraini Abd & Aminuddin, Noor Fathanah & Quraishi, Khurrum Shehzad & Azman, Ninna Sakina & Cravotto, Giancarlo & Leveque, Jean-Marc, 2020. "Microwave-assisted lipid extraction from Chlorella vulgaris in water with 0.5%–2.5% of imidazolium based ionic liquid as additive," Renewable Energy, Elsevier, vol. 149(C), pages 244-252.
    8. Nirmala, N. & Dawn, S.S., 2021. "Optimization of Chlorella variabilis. MK039712.1 lipid transesterification using Response Surface Methodology and analytical characterization of biodiesel," Renewable Energy, Elsevier, vol. 179(C), pages 1663-1673.
    9. Neto, Ana Maria Pereira & Sotana de Souza, Rafael Augusto & Leon-Nino, Amanda Denisse & da Costa, Joana D'arc Aparecida & Tiburcio, Rodolfo Sbrolini & Nunes, Thaís Abreu & Sellare de Mello, Thaís Cris, 2013. "Improvement in microalgae lipid extraction using a sonication-assisted method," Renewable Energy, Elsevier, vol. 55(C), pages 525-531.
    10. Neves, Viviane T. de C. & Sales, Emerson Andrade & Perelo, Louisa W., 2016. "Influence of lipid extraction methods as pre-treatment of microalgal biomass for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 160-165.
    11. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu, 2020. "Experimental assessment on the regulated and unregulated emissions of DI diesel engine fuelled with Chlorella emersonii methyl ester (CEME)," Renewable Energy, Elsevier, vol. 151(C), pages 88-102.
    12. Chadwick, Dara T. & McDonnell, Kevin P. & Brennan, Liam P. & Fagan, Colette C. & Everard, Colm D., 2014. "Evaluation of infrared techniques for the assessment of biomass and biofuel quality parameters and conversion technology processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 672-681.
    13. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    14. Khojastehpour, Mehdi & Nikkhah, Amin & Hashemabadi, Davood, 2015. "A Comparative Study of Energy Use and Greenhouse Gas Emissions of Canola Production," International Journal of Agricultural Management and Development (IJAMAD), Iranian Association of Agricultural Economics, vol. 5(1), March.
    15. Chaudry, Sofia & Bahri, Parisa A. & Moheimani, Navid R., 2015. "Pathways of processing of wet microalgae for liquid fuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1240-1250.
    16. Lin, Kuang C. & Lin, Yuan-Chung & Hsiao, Yi-Hsing, 2014. "Microwave plasma studies of Spirulina algae pyrolysis with relevance to hydrogen production," Energy, Elsevier, vol. 64(C), pages 567-574.
    17. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    18. Lübken, Manfred & Koch, Konrad & Gehring, Tito & Horn, Harald & Wichern, Marc, 2015. "Parameter estimation and long-term process simulation of a biogas reactor operated under trace elements limitation," Applied Energy, Elsevier, vol. 142(C), pages 352-360.
    19. Gan, Peck Yean & Li, Zhi Dong, 2014. "Econometric study on Malaysia׳s palm oil position in the world market to 2035," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 740-747.
    20. Chen, Jiaxin & Li, Ji & Dong, Wenyi & Zhang, Xiaolei & Tyagi, Rajeshwar D. & Drogui, Patrick & Surampalli, Rao Y., 2018. "The potential of microalgae in biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 336-346.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:108:y:2017:i:c:p:410-416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.