IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i19p10437-d649633.html
   My bibliography  Save this article

Comprehensive Risk Assessment of High Temperature Disaster to Kiwifruit in Shaanxi Province, China

Author

Listed:
  • Yining Ma

    (School of Environment, Northeast Normal University, Changchun 130024, China
    State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China
    Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China)

  • Suri Guga

    (School of Environment, Northeast Normal University, Changchun 130024, China
    State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China
    Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China)

  • Jie Xu

    (School of Environment, Northeast Normal University, Changchun 130024, China
    State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China
    Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China)

  • Jiquan Zhang

    (School of Environment, Northeast Normal University, Changchun 130024, China
    State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China
    Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China)

  • Zhijun Tong

    (School of Environment, Northeast Normal University, Changchun 130024, China
    State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China
    Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China)

  • Xingpeng Liu

    (School of Environment, Northeast Normal University, Changchun 130024, China
    State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China
    Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China)

Abstract

In recent years, the main kiwifruit producing region, central-south Shaanxi Province, has often suffered from the threat of extreme high temperatures. Assessing the risk of high-temperature disasters in the region is essential for the rational planning of agricultural production and the development of resilience measures. In this study, a database was established to assess the risk of a high-temperature disaster to kiwifruit. Then, four aspects, hazard, vulnerability, exposure and disaster prevention and mitigation capacity, were taken into account and 19 indexes were selected to make an assessment of the risk of a high-temperature disaster. At the same time, 16 indexes were selected for the assessment of the climatic suitability of kiwifruit in terms of light, heat, water, soil and topography, and were used as one of the indexes for exposure assessment. The analytic hierarchy process and the entropy weighting method were combined to solve the weights for each index. The results reveal that: (1) The Guanzhong Plain has a high climatic suitability for kiwifruit, accounting for 15.14% of the study area. (2) The central part of the study area and southern Shaanxi are at high risk, accounting for 22.7% of the study area. The major kiwifruit producing areas in Shaanxi Province (e.g., Baoji) are at a low risk level, which is conducive to the development of the kiwifruit industry. Our study is the first to provide a comprehensive assessment of the risk of a high-temperature disaster to the economic fruit kiwifruit, providing a reference for disaster resilience and mitigation.

Suggested Citation

  • Yining Ma & Suri Guga & Jie Xu & Jiquan Zhang & Zhijun Tong & Xingpeng Liu, 2021. "Comprehensive Risk Assessment of High Temperature Disaster to Kiwifruit in Shaanxi Province, China," IJERPH, MDPI, vol. 18(19), pages 1-22, October.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:19:p:10437-:d:649633
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/19/10437/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/19/10437/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zheng, Shunsheng & Cui, Ningbo & Gong, Daozhi & Wang, Yaosheng & Hu, Xiaotao & Feng, Yu & Zhang, Yixuan, 2020. "Relationship between stable carbon isotope discrimination and water use efficiency under deficit drip irrigation of kiwifruit in the humid areas of South China," Agricultural Water Management, Elsevier, vol. 240(C).
    2. Hongpeng Guo & Jia Chen & Chulin Pan, 2021. "Assessment on Agricultural Drought Vulnerability and Spatial Heterogeneity Study in China," IJERPH, MDPI, vol. 18(9), pages 1-17, April.
    3. Li, Ziyue & Zhang, Zhao & Zhang, Lingyan, 2021. "Improving regional wheat drought risk assessment for insurance application by integrating scenario-driven crop model, machine learning, and satellite data," Agricultural Systems, Elsevier, vol. 191(C).
    4. Ying Guo & Rui Wang & Zhijun Tong & Xingpeng Liu & Jiquan Zhang, 2019. "Dynamic Evaluation and Regionalization of Maize Drought Vulnerability in the Midwest of Jilin Province," Sustainability, MDPI, vol. 11(15), pages 1-21, August.
    5. Subhasis Mitra & Puneet Srivastava, 2017. "Spatiotemporal variability of meteorological droughts in southeastern USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1007-1038, April.
    6. Yining Ma & Xiaoling Lu & Kaiwei Li & Chunyi Wang & Ari Guna & Jiquan Zhang, 2021. "Prediction of Potential Geographical Distribution Patterns of Actinidia arguta under Different Climate Scenarios," Sustainability, MDPI, vol. 13(6), pages 1-14, March.
    7. Qunying Luo, 2011. "Temperature thresholds and crop production: a review," Climatic Change, Springer, vol. 109(3), pages 583-598, December.
    8. Jeff Tollefson, 2021. "IPCC climate report: Earth is warmer than it’s been in 125,000 years," Nature, Nature, vol. 596(7871), pages 171-172, August.
    9. Zhu, Xiufang & Xu, Kun & Liu, Ying & Guo, Rui & Chen, Lingyi, 2021. "Assessing the vulnerability and risk of maize to drought in China based on the AquaCrop model," Agricultural Systems, Elsevier, vol. 189(C).
    10. Lei Zhang & Wei Song & Wen Song, 2020. "Assessment of Agricultural Drought Risk in the Lancang-Mekong Region, South East Asia," IJERPH, MDPI, vol. 17(17), pages 1-24, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Cong & Li, Kaiwei & Zhang, Jiquan & Guga, Suri & Wang, Rui & Liu, Xingpeng & Tong, Zhijun, 2023. "Dynamic risk assessment of waterlogging disaster to spring peanut (Arachis hypogaea L.) in Henan Province, China," Agricultural Water Management, Elsevier, vol. 277(C).
    2. Mikio Ishiwatari & Daisuke Sasaki, 2023. "Special Issue “Disaster Risk Reduction and Climate Change Adaptation: An Interdisciplinary Approach”," IJERPH, MDPI, vol. 20(3), pages 1-4, February.
    3. Zhang, Daojun & Yang, Wanjing & Kang, Dingrong & Zhang, Han, 2023. "Spatial-temporal characteristics and policy implication for non-grain production of cultivated land in Guanzhong Region," Land Use Policy, Elsevier, vol. 125(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wentong Yang & Liyuan Zhang & Chunlei Liang, 2023. "Agricultural drought disaster risk assessment in Shandong Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1515-1534, September.
    2. Beatrice Monteleone & Iolanda Borzí & Brunella Bonaccorso & Mario Martina, 2023. "Quantifying crop vulnerability to weather-related extreme events and climate change through vulnerability curves," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2761-2796, April.
    3. Guga, Suri & Ma, Yining & Riao, Dao & Zhi, Feng & Xu, Jie & Zhang, Jiquan, 2023. "Drought monitoring of sugarcane and dynamic variation characteristics under global warming: A case study of Guangxi, China," Agricultural Water Management, Elsevier, vol. 275(C).
    4. Yining Ma & Suri Guga & Jie Xu & Yulin Su & Xingpeng Liu & Zhijun Tong & Jiquan Zhang, 2022. "Agricultural Vulnerability Assessment of High-Temperature Disaster in Shaanxi Province of China," Agriculture, MDPI, vol. 12(7), pages 1-20, July.
    5. Monteleone, Beatrice & Borzí, Iolanda & Arosio, Marcello & Cesarini, Luigi & Bonaccorso, Brunella & Martina, Mario, 2023. "Modelling the response of wheat yield to stage-specific water stress in the Po Plain," Agricultural Water Management, Elsevier, vol. 287(C).
    6. Li, Pei & Huang, Qiang & Huang, Shengzhi & Leng, Guoyong & Peng, Jian & Wang, Hao & Zheng, Xudong & Li, Yifei & Fang, Wei, 2022. "Various maize yield losses and their dynamics triggered by drought thresholds based on Copula-Bayesian conditional probabilities," Agricultural Water Management, Elsevier, vol. 261(C).
    7. Delpeuch, Claire & Leblois, Antoine, 2014. "The Elusive Quest for Supply Response to Cash-Crop Market Reforms in Sub-Saharan Africa: The Case of Cotton," World Development, Elsevier, vol. 64(C), pages 521-537.
    8. Matteo Zampieri & Andrea Toreti & Andrej Ceglar & Pierluca De Palma & Thomas Chatzopoulos, 2020. "Analysing the resilience of the European commodity production system with PyResPro, the Python Production Resilience package," Papers 2006.08976, arXiv.org, revised Jun 2020.
    9. Kamal Kumar Murari & Sandeep Mahato & T. Jayaraman & Madhura Swaminathan, 2018. "Extreme Temperatures and Crop Yields in Karnataka, India," Journal, Review of Agrarian Studies, vol. 8(2), pages 92-114, July-Dece.
    10. Amarasingha, R.P.R.K. & Suriyagoda, L.D.B. & Marambe, B. & Gaydon, D.S. & Galagedara, L.W. & Punyawardena, R. & Silva, G.L.L.P. & Nidumolu, U. & Howden, M., 2015. "Simulation of crop and water productivity for rice (Oryza sativa L.) using APSIM under diverse agro-climatic conditions and water management techniques in Sri Lanka," Agricultural Water Management, Elsevier, vol. 160(C), pages 132-143.
    11. Mikio Ishiwatari & Daisuke Sasaki, 2023. "Special Issue “Disaster Risk Reduction and Climate Change Adaptation: An Interdisciplinary Approach”," IJERPH, MDPI, vol. 20(3), pages 1-4, February.
    12. Luo, Li & Sun, Shikun & Xue, Jing & Gao, Zihan & Zhao, Jinfeng & Yin, Yali & Gao, Fei & Luan, Xiaobo, 2023. "Crop yield estimation based on assimilation of crop models and remote sensing data: A systematic evaluation," Agricultural Systems, Elsevier, vol. 210(C).
    13. Hertel, Thomas W. & Lobell, David B., 2014. "Agricultural adaptation to climate change in rich and poor countries: Current modeling practice and potential for empirical contributions," Energy Economics, Elsevier, vol. 46(C), pages 562-575.
    14. Riao, Dao & Guga, Suri & Bao, Yongbin & Liu, Xingping & Tong, Zhijun & Zhang, Jiquan, 2023. "Non-overlap of suitable areas of agro-climatic resources and main planting areas is the main reason for potato drought disaster in Inner Mongolia, China," Agricultural Water Management, Elsevier, vol. 275(C).
    15. Cai, Siyang & Zuo, Depeng & Wang, Huixiao & Xu, Zongxue & Wang, GuoQing & Yang, Hong, 2023. "Assessment of agricultural drought based on multi-source remote sensing data in a major grain producing area of Northwest China," Agricultural Water Management, Elsevier, vol. 278(C).
    16. Jiang, Shouzheng & Tang, Dahua & Zhao, Lu & Liang, Chuan & Cui, Ningbo & Gong, Daozhi & Wang, Yaosheng & Feng, Yu & Hu, Xiaotao & Peng, Yong, 2022. "Effects of different photovoltaic shading levels on kiwifruit growth, yield and water productivity under “agrivoltaic” system in Southwest China," Agricultural Water Management, Elsevier, vol. 269(C).
    17. Roman Rolbiecki & Ali Yücel & Joanna Kocięcka & Atılgan Atilgan & Monika Marković & Daniel Liberacki, 2022. "Analysis of SPI as a Drought Indicator during the Maize Growing Period in the Çukurova Region (Turkey)," Sustainability, MDPI, vol. 14(6), pages 1-29, March.
    18. Fontes, Francisco & Gorst, Ashley & Palmer, Charles, 2020. "Does choice of drought index influence estimates of drought-induced rice losses in India?," Environment and Development Economics, Cambridge University Press, vol. 25(5), pages 459-481, October.
    19. Umesh, Barikara & Reddy, K.S. & Polisgowdar, B.S. & Maruthi, V. & Satishkumar, U. & Ayyanagoudar, M.S. & Rao, Sathyanarayan & Veeresh, H., 2022. "Assessment of climate change impact on maize (Zea mays L.) through aquacrop model in semi-arid alfisol of southern Telangana," Agricultural Water Management, Elsevier, vol. 274(C).
    20. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Gu, Zhe & Ma, Liwang & Zeng, Fanjiang & Li, Lanhai, 2019. "Simulating impacts of climate change on cotton yield and water requirement using RZWQM2," Agricultural Water Management, Elsevier, vol. 222(C), pages 231-241.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:19:p:10437-:d:649633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.