IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i16p8710-d616764.html
   My bibliography  Save this article

Machine Learning Models for Sarcopenia Identification Based on Radiomic Features of Muscles in Computed Tomography

Author

Listed:
  • Young Jae Kim

    (Department of Biomedical Engineering, Gachon University, Inchon 21936, Korea)

Abstract

The diagnosis of sarcopenia requires accurate muscle quantification. As an alternative to manual muscle mass measurement through computed tomography (CT), artificial intelligence can be leveraged for the automation of these measurements. Although generally difficult to identify with the naked eye, the radiomic features in CT images are informative. In this study, the radiomic features were extracted from L3 CT images of the entire muscle area and partial areas of the erector spinae collected from non-small cell lung carcinoma (NSCLC) patients. The first-order statistics and gray-level co-occurrence, gray-level size zone, gray-level run length, neighboring gray-tone difference, and gray-level dependence matrices were the radiomic features analyzed. The identification performances of the following machine learning models were evaluated: logistic regression, support vector machine (SVM), random forest, and extreme gradient boosting (XGB). Sex, coarseness, skewness, and cluster prominence were selected as the relevant features effectively identifying sarcopenia. The XGB model demonstrated the best performance for the entire muscle, whereas the SVM was the worst-performing model. Overall, the models demonstrated improved performance for the entire muscle compared to the erector spinae. Although further validation is required, the radiomic features presented here could become reliable indicators for quantifying the phenomena observed in the muscles of NSCLC patients, thus facilitating the diagnosis of sarcopenia.

Suggested Citation

  • Young Jae Kim, 2021. "Machine Learning Models for Sarcopenia Identification Based on Radiomic Features of Muscles in Computed Tomography," IJERPH, MDPI, vol. 18(16), pages 1-14, August.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:16:p:8710-:d:616764
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/16/8710/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/16/8710/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matthias Schonlau & Rosie Yuyan Zou, 2020. "The random forest algorithm for statistical learning," Stata Journal, StataCorp LLC, vol. 20(1), pages 3-29, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sascha O. Becker, Sascha O & Voth, Hans-Joachim, 2023. "From the Death of God to the Rise of Hitler," The Warwick Economics Research Paper Series (TWERPS) 1478, University of Warwick, Department of Economics.
    2. Xiaxuan He & Qifeng Yuan & Yinghong Qin & Junwen Lu & Gang Li, 2024. "Analysis of Surface Urban Heat Island in the Guangzhou-Foshan Metropolitan Area Based on Local Climate Zones," Land, MDPI, vol. 13(10), pages 1-34, October.
    3. Becker, Sascha O. & Voth, Hans-Joachim, 2023. "From the Death of God to the Rise of Hitler," CEPR Discussion Papers 18543, C.E.P.R. Discussion Papers.
    4. Sakiru Adebola Solarin & Muhammed Sehid Gorus & Onder Ozgur, 2024. "Modelling the economic effect of inbound birth tourism: a random forest algorithm approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(5), pages 4223-4240, October.
    5. Murat Aslan & Onder Ozgur, 2024. "Financial dollarization and its effects on inflation and output in Turkey: a machine learning approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(6), pages 5777-5804, December.
    6. Maria A. F. Silva Dias & Yania Molina Souto & Bruno Biazeto & Enzo Todesco & Jose A. Zuñiga Mora & Dylana Vargas Navarro & Melvin Pérez Chinchilla & Carlos Madrigal Araya & Dayanna Arce Fernández & Be, 2024. "Reduction of Wind Speed Forecast Error in Costa Rica Tejona Wind Farm with Artificial Intelligence," Energies, MDPI, vol. 17(22), pages 1-12, November.
    7. Tomasz Rymarczyk & Konrad Niderla & Edward Kozłowski & Krzysztof Król & Joanna Maria Wyrwisz & Sylwia Skrzypek-Ahmed & Piotr Gołąbek, 2021. "Logistic Regression with Wave Preprocessing to Solve Inverse Problem in Industrial Tomography for Technological Process Control," Energies, MDPI, vol. 14(23), pages 1-21, December.
    8. Lamperti, Fabio, 2024. "Unlocking machine learning for social sciences: The case for identifying Industry 4.0 adoption across business restructuring events," Technological Forecasting and Social Change, Elsevier, vol. 207(C).
    9. Jianghong Xu & Wei Lu & Weixin Wang, 2024. "From “fragile smallholders” to “resilient smallholders”: measuring rural household resilience in China," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
    10. Forbes, Kevin F., 2023. "Demand for grid-supplied electricity in the presence of distributed solar energy resources: Evidence from New York City," Utilities Policy, Elsevier, vol. 80(C).
    11. Achim Ahrens & Christian B. Hansen & Mark E. Schaffer & Thomas Wiemann, 2024. "ddml: Double/debiased machine learning in Stata," Stata Journal, StataCorp LLC, vol. 24(1), pages 3-45, March.
    12. Pecorari,Natalia Gisel & Cuesta Leiva,Jose Antonio, 2023. "Citizen Participation and Political Trust in Latin America and the Caribbean : AMachine Learning Approach," Policy Research Working Paper Series 10335, The World Bank.
    13. Xiangzhao Yan & Wei Yang & Zaohong Pu & Qilong Zhang & Yutong Chen & Jiaqi Chen & Weiqi Xiang & Hongyu Chen & Yuyang Cheng & Yanwei Zhao, 2025. "Responses of Typical Riparian Vegetation to Annual Variation of River Flow in a Semi-Arid Climate Region: Case Study of China’s Xiliao River," Land, MDPI, vol. 14(1), pages 1-19, January.
    14. Hillebrecht, Michael & Klonner, Stefan & Pacere, Noraogo A., 2020. "Dynamic Properties of Poverty Targeting," Working Papers 0696, University of Heidelberg, Department of Economics.
    15. Wang, Weiwen & Shen, Yang & Qiao, Jiajun & Wang, Ying & Batala, Lochan Kumar & Xiao, Jie, 2025. "The impact of urban-rural residents’ life quality gap on the cultivated land transfer," Land Use Policy, Elsevier, vol. 148(C).
    16. Ivan Brandić & Alan Antonović & Lato Pezo & Božidar Matin & Tajana Krička & Vanja Jurišić & Karlo Špelić & Mislav Kontek & Juraj Kukuruzović & Mateja Grubor & Ana Matin, 2023. "Energy Potentials of Agricultural Biomass and the Possibility of Modelling Using RFR and SVM Models," Energies, MDPI, vol. 16(2), pages 1-10, January.
    17. David Simon & Aaron Sojourner & Jon Pedersen & Heidi Ombisa Skallet, 2024. "Financial Incentives for Adoption and Kin Guardianship Improve Achievement for Foster Children," Upjohn Working Papers 24-401, W.E. Upjohn Institute for Employment Research.
    18. Kang, Lili & Zhao, Guangchuan, 2022. "Financial support for unmet need for personal assistance with daily activities: Implications from China's long-term care insurance pilots," Finance Research Letters, Elsevier, vol. 45(C).
    19. Hong Pan & Jie Yang & Yang Yu & Yuan Zheng & Xiaonan Zheng & Chenyang Hang, 2024. "Intelligent Low-Consumption Optimization Strategies: Economic Operation of Hydropower Stations Based on Improved LSTM and Random Forest Machine Learning Algorithm," Mathematics, MDPI, vol. 12(9), pages 1-20, April.
    20. Behr,Daniela Monika & Chen,Lixue & Goel,Ankita & Haider,Khondoker Tanveer & Sandeep Singh & Zaman,Asad, 2023. "Estimating House Prices in Emerging Markets and Developing Economies : A Big Data Approach," Policy Research Working Paper Series 10301, The World Bank.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:16:p:8710-:d:616764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.