IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i10p5072-d552243.html
   My bibliography  Save this article

Rise of Clinical Studies in the Field of Machine Learning: A Review of Data Registered in ClinicalTrials.gov

Author

Listed:
  • Claus Zippel

    (Chair of Management and Innovation in Health Care, Faculty of Management, Economics and Society, Witten/Herdecke University, 58448 Witten, Germany)

  • Sabine Bohnet-Joschko

    (Chair of Management and Innovation in Health Care, Faculty of Management, Economics and Society, Witten/Herdecke University, 58448 Witten, Germany)

Abstract

Although advances in machine-learning healthcare applications promise great potential for innovative medical care, few data are available on the translational status of these new technologies. We aimed to provide a comprehensive characterization of the development and status quo of clinical studies in the field of machine learning. For this purpose, we performed a registry-based analysis of machine-learning-related studies that were published and first available in the ClinicalTrials.gov database until 2020, using the database’s study classification. In total, n = 358 eligible studies could be included in the analysis. Of these, 82% were initiated by academic institutions/university (hospitals) and 18% by industry sponsors. A total of 96% were national and 4% international. About half of the studies (47%) had at least one recruiting location in a country in North America, followed by Europe (37%) and Asia (15%). Most of the studies reported were initiated in the medical field of imaging (12%), followed by cardiology, psychiatry, anesthesia/intensive care medicine (all 11%) and neurology (10%). Although the majority of the clinical studies were still initiated in an academic research context, the first industry-financed projects on machine-learning-based algorithms are becoming visible. The number of clinical studies with machine-learning-related applications and the variety of medical challenges addressed serve to indicate their increasing importance in future clinical care. Finally, they also set a time frame for the adjustment of medical device-related regulation and governance.

Suggested Citation

  • Claus Zippel & Sabine Bohnet-Joschko, 2021. "Rise of Clinical Studies in the Field of Machine Learning: A Review of Data Registered in ClinicalTrials.gov," IJERPH, MDPI, vol. 18(10), pages 1-14, May.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:10:p:5072-:d:552243
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/10/5072/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/10/5072/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andre Esteva & Brett Kuprel & Roberto A. Novoa & Justin Ko & Susan M. Swetter & Helen M. Blau & Sebastian Thrun, 2017. "Correction: Corrigendum: Dermatologist-level classification of skin cancer with deep neural networks," Nature, Nature, vol. 546(7660), pages 686-686, June.
    2. Jonathan Grant & Liz Green & Barbara Mason, 2003. "Basic research and health: a reassessment of the scientific basis for the support of biomedical science," Research Evaluation, Oxford University Press, vol. 12(3), pages 217-224, December.
    3. DonHee Lee & Seong No Yoon, 2021. "Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and Challenges," IJERPH, MDPI, vol. 18(1), pages 1-18, January.
    4. Kurt Benke & Geza Benke, 2018. "Artificial Intelligence and Big Data in Public Health," IJERPH, MDPI, vol. 15(12), pages 1-9, December.
    5. Zippel, Claus & Bohnet-Joschko, Sabine, 2017. "Post market surveillance in the german medical device sector – current state and future perspectives," Health Policy, Elsevier, vol. 121(8), pages 880-886.
    6. Wang, Yichuan & Hajli, Nick, 2017. "Exploring the path to big data analytics success in healthcare," Journal of Business Research, Elsevier, vol. 70(C), pages 287-299.
    7. Derek Wong & Stephen Yip, 2018. "Machine learning classifies cancer," Nature, Nature, vol. 555(7697), pages 446-447, March.
    8. Andre Esteva & Brett Kuprel & Roberto A. Novoa & Justin Ko & Susan M. Swetter & Helen M. Blau & Sebastian Thrun, 2017. "Dermatologist-level classification of skin cancer with deep neural networks," Nature, Nature, vol. 542(7639), pages 115-118, February.
    9. Beck, ACC & Retèl, VP & Bhairosing, PA & van den Brekel, MWM & van Harten, WH, 2019. "Barriers and facilitators of patient access to medical devices in Europe: A systematic literature review," Health Policy, Elsevier, vol. 123(12), pages 1185-1198.
    10. Casagranda, Ivo & Costantino, Giorgio & Falavigna, Greta & Furlan, Raffaello & Ippoliti, Roberto, 2016. "Artificial Neural Networks and risk stratification models in Emergency Departments: The policy maker's perspective," Health Policy, Elsevier, vol. 120(1), pages 111-119.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anran Wang & Xiaolei Xiu & Shengyu Liu & Qing Qian & Sizhu Wu, 2022. "Characteristics of Artificial Intelligence Clinical Trials in the Field of Healthcare: A Cross-Sectional Study on ClinicalTrials.gov," IJERPH, MDPI, vol. 19(20), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Xiaozhi & Wu, Xitong & Cao, Xin & Wu, Jifei, 2023. "The effect of medical artificial intelligence innovation locus on consumer adoption of new products," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    2. Cemal Erdem & Arnab Mutsuddy & Ethan M. Bensman & William B. Dodd & Michael M. Saint-Antoine & Mehdi Bouhaddou & Robert C. Blake & Sean M. Gross & Laura M. Heiser & F. Alex Feltus & Marc R. Birtwistle, 2022. "A scalable, open-source implementation of a large-scale mechanistic model for single cell proliferation and death signaling," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Majd Oteibi & Adam Tamimi & Kaneez Abbas & Gabriel Tamimi & Danesh Khazaei & Hadi Khazaei, 2024. "Advancing Digital Health using AI and Machine Learning Solutions for Early Ultrasonic Detection of Breast Disorders in Women," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(11), pages 518-527, November.
    4. Lin Lu & Laurent Dercle & Binsheng Zhao & Lawrence H. Schwartz, 2021. "Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. Zheng Yan & Wenqian Robertson & Yaosheng Lou & Tom W. Robertson & Sung Yong Park, 2021. "Finding leading scholars in mobile phone behavior: a mixed-method analysis of an emerging interdisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9499-9517, December.
    6. Freddy Gabbay & Rotem Lev Aharoni & Ori Schweitzer, 2022. "Deep Neural Network Memory Performance and Throughput Modeling and Simulation Framework," Mathematics, MDPI, vol. 10(21), pages 1-20, November.
    7. Sonika Darshan, 2024. "Data Mining for Disease Diagnosis: A Review of Machine Learning Approaches in Healthcare," Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023, Open Knowledge, vol. 6(1), pages 716-726.
    8. Gang Yu & Kai Sun & Chao Xu & Xing-Hua Shi & Chong Wu & Ting Xie & Run-Qi Meng & Xiang-He Meng & Kuan-Song Wang & Hong-Mei Xiao & Hong-Wen Deng, 2021. "Accurate recognition of colorectal cancer with semi-supervised deep learning on pathological images," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    9. DonHee Lee & Seong No Yoon, 2021. "Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and Challenges," IJERPH, MDPI, vol. 18(1), pages 1-18, January.
    10. Shang Li & Fei Yu & Shankou Zhang & Huige Yin & Hairong Lin, 2025. "Optimization of Direct Convolution Algorithms on ARM Processors for Deep Learning Inference," Mathematics, MDPI, vol. 13(5), pages 1-19, February.
    11. Dario Sipari & Betsy D. M. Chaparro-Rico & Daniele Cafolla, 2022. "SANE (Easy Gait Analysis System): Towards an AI-Assisted Automatic Gait-Analysis," IJERPH, MDPI, vol. 19(16), pages 1-27, August.
    12. Darko B. Vuković & Senanu Dekpo-Adza & Stefana Matović, 2025. "AI integration in financial services: a systematic review of trends and regulatory challenges," Palgrave Communications, Palgrave Macmillan, vol. 12(1), pages 1-29, December.
    13. Walter Leal Filho & João Henrique Paulino Pires Eustachio & Andreea Corina Nita (Danila) & Maria Alzira Pimenta Dinis & Amanda Lange Salvia & Debby R. E. Cotton & Kamila Frizzo & Laís Viera Trevisan &, 2024. "Using data science for sustainable development in higher education," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(1), pages 15-28, February.
    14. Julian Schiele & Thomas Koperna & Jens O. Brunner, 2021. "Predicting intensive care unit bed occupancy for integrated operating room scheduling via neural networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 65-88, February.
    15. Oded Rotem & Tamar Schwartz & Ron Maor & Yishay Tauber & Maya Tsarfati Shapiro & Marcos Meseguer & Daniella Gilboa & Daniel S. Seidman & Assaf Zaritsky, 2024. "Visual interpretability of image-based classification models by generative latent space disentanglement applied to in vitro fertilization," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    16. Julien Issa & Raphael Olszewski & Marta Dyszkiewicz-Konwińska, 2022. "The Effectiveness of Semi-Automated and Fully Automatic Segmentation for Inferior Alveolar Canal Localization on CBCT Scans: A Systematic Review," IJERPH, MDPI, vol. 19(1), pages 1-10, January.
    17. Taneja, Anu & Arora, Anuja, 2019. "Modeling user preferences using neural networks and tensor factorization model," International Journal of Information Management, Elsevier, vol. 45(C), pages 132-148.
    18. Hanning Ying & Xiaoqing Liu & Min Zhang & Yiyue Ren & Shihui Zhen & Xiaojie Wang & Bo Liu & Peng Hu & Lian Duan & Mingzhi Cai & Ming Jiang & Xiangdong Cheng & Xiangyang Gong & Haitao Jiang & Jianshuai, 2024. "A multicenter clinical AI system study for detection and diagnosis of focal liver lesions," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    19. Nao Aisu & Masahiro Miyake & Kohei Takeshita & Masato Akiyama & Ryo Kawasaki & Kenji Kashiwagi & Taiji Sakamoto & Tetsuro Oshika & Akitaka Tsujikawa, 2022. "Regulatory-approved deep learning/machine learning-based medical devices in Japan as of 2020: A systematic review," PLOS Digital Health, Public Library of Science, vol. 1(1), pages 1-12, January.
    20. Cristian Simionescu & Adrian Iftene, 2022. "Deep Learning Research Directions in Medical Imaging," Mathematics, MDPI, vol. 10(23), pages 1-25, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:10:p:5072-:d:552243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.