IDEAS home Printed from https://ideas.repec.org/a/wly/sustdv/v32y2024i1p15-28.html
   My bibliography  Save this article

Using data science for sustainable development in higher education

Author

Listed:
  • Walter Leal Filho
  • João Henrique Paulino Pires Eustachio
  • Andreea Corina Nita (Danila)
  • Maria Alzira Pimenta Dinis
  • Amanda Lange Salvia
  • Debby R. E. Cotton
  • Kamila Frizzo
  • Laís Viera Trevisan
  • Thais Dibbern

Abstract

Despite the abundance of studies focused on how higher education institutions (HEIs) are implementing sustainable development (SD) in their educational programmes, there is a paucity of interdisciplinary studies exploring the role of technology, such as data science, in an SD context. Further research is thus needed to identify how SD is being deployed in higher education (HE), generating positive externalities for society and the environment. This study aims to address this research gap by exploring various ways in which data science may support university efforts towards SD. The methodology relied on a bibliometric analysis to understand and visualise the connections between data science and SD in HE, as well as reporting on selected case studies showing how data science may be deployed for creating SD impact in HE and in the community. The results from the bibliometric analysis unveil five research strands driving this field, and the case studies exemplify them. This study can be considered innovative since it follows previous research on artificial intelligence and SD. Moreover, the combination of bibliometric analysis and case studies provides an overview of trends, which may be useful to researchers and decision‐makers who wish to explore the use of data science for SD in HEIs. Finally, the findings highlight how data science can be used in HEIs, combined with a framework developed to support further research into SD in HE.

Suggested Citation

  • Walter Leal Filho & João Henrique Paulino Pires Eustachio & Andreea Corina Nita (Danila) & Maria Alzira Pimenta Dinis & Amanda Lange Salvia & Debby R. E. Cotton & Kamila Frizzo & Laís Viera Trevisan &, 2024. "Using data science for sustainable development in higher education," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(1), pages 15-28, February.
  • Handle: RePEc:wly:sustdv:v:32:y:2024:i:1:p:15-28
    DOI: 10.1002/sd.2638
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sd.2638
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sd.2638?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andre Esteva & Brett Kuprel & Roberto A. Novoa & Justin Ko & Susan M. Swetter & Helen M. Blau & Sebastian Thrun, 2017. "Correction: Corrigendum: Dermatologist-level classification of skin cancer with deep neural networks," Nature, Nature, vol. 546(7660), pages 686-686, June.
    2. Syed Hammad Mian & Bashir Salah & Wadea Ameen & Khaja Moiduddin & Hisham Alkhalefah, 2020. "Adapting Universities for Sustainability Education in Industry 4.0: Channel of Challenges and Opportunities," Sustainability, MDPI, vol. 12(15), pages 1-33, July.
    3. Hamed Gholami & Mohamad Faizal Bachok & Muhamad Zameri Mat Saman & Dalia Streimikiene & Safian Sharif & Norhayati Zakuan, 2020. "An ISM Approach for the Barrier Analysis in Implementing Green Campus Operations: Towards Higher Education Sustainability," Sustainability, MDPI, vol. 12(1), pages 1-19, January.
    4. Gina Raluca Guse & Marian Dragos Mangiuc, 2022. "Digital Transformation in Romanian Accounting Practice and Education: Impact and Perspectives," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 24(59), pages 252-252.
    5. Agne Paulauskaite-Taraseviciene & Ingrida Lagzdinyte-Budnike & Lina Gaiziuniene & Vilma Sukacke & Laura Daniuseviciute-Brazaite, 2022. "Assessing Education for Sustainable Development in Engineering Study Programs: A Case of AI Ecosystem Creation," Sustainability, MDPI, vol. 14(3), pages 1-22, February.
    6. Nees Jan Eck & Ludo Waltman, 2017. "Citation-based clustering of publications using CitNetExplorer and VOSviewer," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 1053-1070, May.
    7. Andre Esteva & Brett Kuprel & Roberto A. Novoa & Justin Ko & Susan M. Swetter & Helen M. Blau & Sebastian Thrun, 2017. "Dermatologist-level classification of skin cancer with deep neural networks," Nature, Nature, vol. 542(7639), pages 115-118, February.
    8. Igor Linkov & Benjamin D. Trump & Kelsey Poinsatte-Jones & Marie-Valentine Florin, 2018. "Governance Strategies for a Sustainable Digital World," Sustainability, MDPI, vol. 10(2), pages 1-8, February.
    9. Ritu Agarwal & Vasant Dhar, 2014. "Editorial —Big Data, Data Science, and Analytics: The Opportunity and Challenge for IS Research," Information Systems Research, INFORMS, vol. 25(3), pages 443-448, September.
    10. Adham Alsharkawi & Mohammad Al-Fetyani & Maha Dawas & Heba Saadeh & Musa Alyaman, 2021. "Poverty Classification Using Machine Learning: The Case of Jordan," Sustainability, MDPI, vol. 13(3), pages 1-16, January.
    11. Xiangfei Yuan & Haijing Hao & Chenghua Guan & Alex Pentland, 2022. "Which factors affect the performance of technology business incubators in China? An entrepreneurial ecosystem perspective," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-20, January.
    12. Shahriar Akter & Samuel Fosso Wamba, 2019. "Big data and disaster management: a systematic review and agenda for future research," Annals of Operations Research, Springer, vol. 283(1), pages 939-959, December.
    13. Zheng, Yanan & Ren, Dongming & Guo, Zheyu & Hu, Zhaoguang & Wen, Quan, 2019. "Research on integrated resource strategic planning based on complex uncertainty simulation with case study of China," Energy, Elsevier, vol. 180(C), pages 772-786.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eugénia Pedro & Helena Alves & João Leitão, 2024. "Sustainable development practices in public higher education: A new conceptual framework for nurturing student satisfaction and reinforcing attractiveness to international students," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(3), pages 2565-2582, June.
    2. Ana Carolina Ferreira Costa & Andresa Monique de Brito Silva & Maximilian Espuny & Aglaé Baptista Torres Rocha & Otávio José de Oliveira, 2024. "Toward quality education: Contributions of EdTech to the achievement of the fourth United Nations sustainable development goal," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(3), pages 1634-1651, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Majd Oteibi & Adam Tamimi & Kaneez Abbas & Gabriel Tamimi & Danesh Khazaei & Hadi Khazaei, 2024. "Advancing Digital Health using AI and Machine Learning Solutions for Early Ultrasonic Detection of Breast Disorders in Women," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(11), pages 518-527, November.
    2. Lin Lu & Laurent Dercle & Binsheng Zhao & Lawrence H. Schwartz, 2021. "Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Zheng Yan & Wenqian Robertson & Yaosheng Lou & Tom W. Robertson & Sung Yong Park, 2021. "Finding leading scholars in mobile phone behavior: a mixed-method analysis of an emerging interdisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9499-9517, December.
    4. Freddy Gabbay & Rotem Lev Aharoni & Ori Schweitzer, 2022. "Deep Neural Network Memory Performance and Throughput Modeling and Simulation Framework," Mathematics, MDPI, vol. 10(21), pages 1-20, November.
    5. Sonika Darshan, 2024. "Data Mining for Disease Diagnosis: A Review of Machine Learning Approaches in Healthcare," Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023, Open Knowledge, vol. 6(1), pages 716-726.
    6. Gang Yu & Kai Sun & Chao Xu & Xing-Hua Shi & Chong Wu & Ting Xie & Run-Qi Meng & Xiang-He Meng & Kuan-Song Wang & Hong-Mei Xiao & Hong-Wen Deng, 2021. "Accurate recognition of colorectal cancer with semi-supervised deep learning on pathological images," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    7. DonHee Lee & Seong No Yoon, 2021. "Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and Challenges," IJERPH, MDPI, vol. 18(1), pages 1-18, January.
    8. Shang Li & Fei Yu & Shankou Zhang & Huige Yin & Hairong Lin, 2025. "Optimization of Direct Convolution Algorithms on ARM Processors for Deep Learning Inference," Mathematics, MDPI, vol. 13(5), pages 1-19, February.
    9. Dario Sipari & Betsy D. M. Chaparro-Rico & Daniele Cafolla, 2022. "SANE (Easy Gait Analysis System): Towards an AI-Assisted Automatic Gait-Analysis," IJERPH, MDPI, vol. 19(16), pages 1-27, August.
    10. Darko B. Vuković & Senanu Dekpo-Adza & Stefana Matović, 2025. "AI integration in financial services: a systematic review of trends and regulatory challenges," Palgrave Communications, Palgrave Macmillan, vol. 12(1), pages 1-29, December.
    11. Abdulrahman Obaid AI-Youbi & Abdulmonem Al-Hayani & Hisham J. Bardesi & Mohammed Basheri & Miltiadis D. Lytras & Naif Radi Aljohani, 2020. "The King Abdulaziz University (KAU) Pandemic Framework: A Methodological Approach to Leverage Social Media for the Sustainable Management of Higher Education in Crisis," Sustainability, MDPI, vol. 12(11), pages 1-21, May.
    12. Julian Schiele & Thomas Koperna & Jens O. Brunner, 2021. "Predicting intensive care unit bed occupancy for integrated operating room scheduling via neural networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 65-88, February.
    13. Oded Rotem & Tamar Schwartz & Ron Maor & Yishay Tauber & Maya Tsarfati Shapiro & Marcos Meseguer & Daniella Gilboa & Daniel S. Seidman & Assaf Zaritsky, 2024. "Visual interpretability of image-based classification models by generative latent space disentanglement applied to in vitro fertilization," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    14. Taneja, Anu & Arora, Anuja, 2019. "Modeling user preferences using neural networks and tensor factorization model," International Journal of Information Management, Elsevier, vol. 45(C), pages 132-148.
    15. Hanning Ying & Xiaoqing Liu & Min Zhang & Yiyue Ren & Shihui Zhen & Xiaojie Wang & Bo Liu & Peng Hu & Lian Duan & Mingzhi Cai & Ming Jiang & Xiangdong Cheng & Xiangyang Gong & Haitao Jiang & Jianshuai, 2024. "A multicenter clinical AI system study for detection and diagnosis of focal liver lesions," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. Nao Aisu & Masahiro Miyake & Kohei Takeshita & Masato Akiyama & Ryo Kawasaki & Kenji Kashiwagi & Taiji Sakamoto & Tetsuro Oshika & Akitaka Tsujikawa, 2022. "Regulatory-approved deep learning/machine learning-based medical devices in Japan as of 2020: A systematic review," PLOS Digital Health, Public Library of Science, vol. 1(1), pages 1-12, January.
    17. Cristian Simionescu & Adrian Iftene, 2022. "Deep Learning Research Directions in Medical Imaging," Mathematics, MDPI, vol. 10(23), pages 1-25, November.
    18. Aglika Kaneva, 2024. "Digitalisation in the Financial Sector," Innovative Information Technologies for Economy Digitalization (IITED), University of National and World Economy, Sofia, Bulgaria, issue 1, pages 264-274, October.
    19. Jingui Zhang & Chuangji Meng & Cunlu Xu & Jingyong Ma & Wei Su, 2022. "Deep Transfer Learning Method Based on Automatic Domain Alignment and Moment Matching," Mathematics, MDPI, vol. 10(14), pages 1-14, July.
    20. Yuming Jiang & Zhicheng Zhang & Wei Wang & Weicai Huang & Chuanli Chen & Sujuan Xi & M. Usman Ahmad & Yulan Ren & Shengtian Sang & Jingjing Xie & Jen-Yeu Wang & Wenjun Xiong & Tuanjie Li & Zhen Han & , 2023. "Biology-guided deep learning predicts prognosis and cancer immunotherapy response," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:sustdv:v:32:y:2024:i:1:p:15-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1719 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.