IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i7p2589-d343702.html
   My bibliography  Save this article

The Role of Green Building Materials in Reducing Environmental and Human Health Impacts

Author

Listed:
  • Seyed Meysam Khoshnava

    (UTM Construction Research Centre, Institute for Smart Infrastructure and Innovative Construction, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor 81310, Malaysia)

  • Raheleh Rostami

    (Department of Architecture, Sari Branch, Islamic Azad University, Sari 4816119318, Iran)

  • Rosli Mohamad Zin

    (School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor 81310, Malaysia)

  • Dalia Štreimikienė

    (Lithuanian Institute of Agrarian Economics, A. Vivulskio g. 4A-13, 03220 Vilnius, Lithuania)

  • Abbas Mardani

    (Informetrics Research Group, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
    Faculty of Business Administration, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam)

  • Mohammad Ismail

    (School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor 81310, Malaysia)

Abstract

Conventional building materials (CBMs) made from non-renewable resources are the main source of indoor air contaminants, whose impact can extend from indoors to outdoors. Given their sustainable development (SD) prospect, green building materials (GBMs) with non-toxic, natural, and organic compounds have the potential to reduce their overall impacts on environmental and human health. In this regard, biocomposites as GBMs are environmentally friendly, safe, and recyclable materials and their replacement of CBMs reduces environmental impacts and human health concerns. This study aims to develop a model of fully hybrid bio-based biocomposite as non-structural GBMs and compare it with fully petroleum-based composite in terms of volatile organic compound (VOC) emissions and human health impacts. Using a small chamber test (American Society for Testing and Materials (ASTM)-D5116) for VOC investigation and SimaPro software modeling with the ReCiPe method for evaluating human health impacts. Life cycle assessment (LCA) methodology is used, and the results indicate that switching the fully hybrid bio-based biocomposite with the fully petroleum-based composite could reduce more than 50% impacts on human health in terms of indoor and outdoor. Our results indicate that the usage of biocomposite as GBMs can be an environmentally friendly solution for reducing the total indoor and outdoor impacts on human health.

Suggested Citation

  • Seyed Meysam Khoshnava & Raheleh Rostami & Rosli Mohamad Zin & Dalia Štreimikienė & Abbas Mardani & Mohammad Ismail, 2020. "The Role of Green Building Materials in Reducing Environmental and Human Health Impacts," IJERPH, MDPI, vol. 17(7), pages 1-22, April.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:7:p:2589-:d:343702
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/7/2589/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/7/2589/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barbier, Edward B. & Burgess, Joanne C., 2017. "The sustainable development goals and the systems approach to sustainability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 11, pages 1-23.
    2. Abd Rashid, Ahmad Faiz & Yusoff, Sumiani, 2015. "A review of life cycle assessment method for building industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 244-248.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pierluigi Morano & Francesco Tajani & Felicia Di Liddo & Paola Amoruso, 2024. "A Feasibility Analysis of Energy Retrofit Initiatives Aimed at the Existing Property Assets Decarbonisation," Sustainability, MDPI, vol. 16(8), pages 1-19, April.
    2. Hana Svobodová & Petra Hlaváčková, 2023. "Forest as a source of renewable material to reduce the environmental impact of buildings," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 69(10), pages 451-462.
    3. Anita Boros & Dávid Tőzsér, 2023. "The Emerging Role of Plant-Based Building Materials in the Construction Industry—A Bibliometric Analysis," Resources, MDPI, vol. 12(10), pages 1-16, October.
    4. Ioannis Vardopoulos & Ioannis Vannas & George Xydis & Constantinos Vassiliades, 2023. "Homeowners’ Perceptions of Renewable Energy and Market Value of Sustainable Buildings," Energies, MDPI, vol. 16(10), pages 1-18, May.
    5. Constantin C. Bungau & Codruta Bendea & Tudor Bungau & Andrei-Flavius Radu & Marcela Florina Prada & Ioana Francesca Hanga-Farcas & Cosmin Mihai Vesa, 2024. "The Relationship between the Parameters That Characterize a Built Living Space and the Health Status of Its Inhabitants," Sustainability, MDPI, vol. 16(5), pages 1-35, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:thr:techub:10027:y:2022:i:1:p:253-268 is not listed on IDEAS
    2. Burek, Jasmina & Nutter, Darin W., 2019. "A life cycle assessment-based multi-objective optimization of the purchased, solar, and wind energy for the grocery, perishables, and general merchandise multi-facility distribution center network," Applied Energy, Elsevier, vol. 235(C), pages 1427-1446.
    3. Kęstutis Biekša & Violeta Valiulė & Ligita Šimanskienė & Raffaele Silvestri, 2022. "Assessment of Sustainable Economic Development in the EU Countries with Reference to the SDGs and Environmental Footprint Indices," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
    4. Hanna Dudek & Joanna Myszkowska-Ryciak & Agnieszka Wojewódzka-Wiewiórska, 2021. "Profiles of Food Insecurity: Similarities and Differences across Selected CEE Countries," Energies, MDPI, vol. 14(16), pages 1-19, August.
    5. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    6. Aurelia Rybak & Ewelina Włodarczyk, 2022. "Impact of Sustainable Development and Environmental Protection on the Volume of Domestic Hard Coal Sales in Poland," Energies, MDPI, vol. 15(2), pages 1-12, January.
    7. Chara Papoutsi & Irene Chaidi & Athanasios Drigas & Charalabos Skianis & Charalampos Karagiannidis, 2022. "Emotional Intelligence and ICTs for Women and Equality," Technium Social Sciences Journal, Technium Science, vol. 27(1), pages 253-268, January.
    8. Mohammad S. M. Almulhim & Dexter V. L. Hunt & Chris D. F. Rogers, 2020. "A Resilience and Environmentally Sustainable Assessment Framework (RESAF) for Domestic Building Materials in Saudi Arabia," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    9. Neumann, Kai & Anderson, Carl & Denich, Manfred, 2018. "Participatory, explorative, qualitative modeling: Application of the iMODELER software to assess trade-offs among the SDGs," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-19.
    10. David Tremblay & François Fortier & Jean‐François Boucher & Olivier Riffon & Claude Villeneuve, 2020. "Sustainable development goal interactions: An analysis based on the five pillars of the 2030 agenda," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(6), pages 1584-1596, November.
    11. Shin-Cheng Yeh & Haw-Jeng Chiou & Ai-Wei Wu & Ho-Ching Lee & Homer C. Wu, 2019. "Diverged Preferences towards Sustainable Development Goals? A Comparison between Academia and the Communication Industry," IJERPH, MDPI, vol. 16(22), pages 1-21, November.
    12. Krzysztof Kluza & Magdalena Zioło & Iwona Bąk & Anna Spoz, 2021. "Achieving Environmental Policy Objectives through the Implementation of Sustainable Development Goals. The Case for European Union Countries," Energies, MDPI, vol. 14(8), pages 1-22, April.
    13. Adriana Estokova & Marcela Ondova & Martina Wolfova & Alena Paulikova & Stanislav Toth, 2019. "Examination of Bearing Walls Regarding Their Environmental Performance," Energies, MDPI, vol. 12(2), pages 1-27, January.
    14. Abdulkarim Hasan Rashed & Afzal Shah, 2021. "The role of private sector in the implementation of sustainable development goals," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 2931-2948, March.
    15. Timothy Jena & Sakdirat Kaewunruen, 2021. "Life Cycle Sustainability Assessments of an Innovative FRP Composite Footbridge," Sustainability, MDPI, vol. 13(23), pages 1-20, November.
    16. Alejandro Padilla-Rivera & Ben Amor & Pierre Blanchet, 2018. "Evaluating the Link between Low Carbon Reductions Strategies and Its Performance in the Context of Climate Change: A Carbon Footprint of a Wood-Frame Residential Building in Quebec, Canada," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    17. Emilia Conte, 2018. "The Era of Sustainability: Promises, Pitfalls and Prospects for Sustainable Buildings and the Built Environment," Sustainability, MDPI, vol. 10(6), pages 1-16, June.
    18. Cook, David & Davíðsdóttir, Brynhildur, 2021. "An appraisal of interlinkages between macro-economic indicators of economic well-being and the sustainable development goals," Ecological Economics, Elsevier, vol. 184(C).
    19. Seungjun Roh & Sungho Tae & Rakhyun Kim, 2018. "Analysis of Embodied Environmental Impacts of Korean Apartment Buildings Considering Major Building Materials," Sustainability, MDPI, vol. 10(6), pages 1-17, May.
    20. Nariê Rinke Dias de Souza & Alexandre Souza & Mateus Ferreira Chagas & Thayse Aparecida Dourado Hernandes & Otávio Cavalett, 2022. "Addressing the contributions of electricity from biomass in Brazil in the context of the Sustainable Development Goals using life cycle assessment methods," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 980-995, June.
    21. Anita Breuer & Hannah Janetschek & Daniele Malerba, 2019. "Translating Sustainable Development Goal (SDG) Interdependencies into Policy Advice," Sustainability, MDPI, vol. 11(7), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:7:p:2589-:d:343702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.