IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v12y2023i10p124-d1263281.html
   My bibliography  Save this article

The Emerging Role of Plant-Based Building Materials in the Construction Industry—A Bibliometric Analysis

Author

Listed:
  • Anita Boros

    (Circular Economy Analysis Center, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1, H-2100 Gödöllő, Hungary
    Lajos Lőrincz Department of Administrative Law, Ludovika University of Public Service, Ludovika sq. 2, H-1083 Budapest, Hungary)

  • Dávid Tőzsér

    (Circular Economy Analysis Center, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1, H-2100 Gödöllő, Hungary
    Department of Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem Sq. 1, H-4032 Debrecen, Hungary)

Abstract

The emergence of plant-based building materials is supported by several factors, such as shortages, adverse effects, and quality deficits of conventional resources, strict legislative frameworks targeting the realization of Sustainable Development Goals (SDGs), and growing environmental awareness on the individual and stakeholder levels. To support these findings, this paper aimed to assess the relevance of these green materials in the construction industry and highlight the most widespread and thoroughly studied plant-based compounds in the literature, using bibliometric analysis. By evaluating 977 publications from 453 sources, the results show that the total number of relevant papers has increased yearly, while most belonged to the engineering discipline. Most articles were dedicated to one or more of the SDGs, which was confirmed by the more comprehensive representation and elaboration of “green”, “environmental”, and “sustainability” aspects regarding the topics of “materials” and “building” as the most frequent terms. Additionally, a wide range of plant-based building materials are thoroughly evaluated in the literature; these are primarily used to improve conventional materials’ mechanical properties, while many are also tested as substitutes for conventional ones. In conclusion, the green transition in the construction industry is aided by the scientific community by proposing plant-based supplements and alternatives to well-known materials and practices; however, further in-depth studies are needed to verify the applicability of such novelties to gain uniform acceptance and foster the expansion of sustainability initiatives in the sector.

Suggested Citation

  • Anita Boros & Dávid Tőzsér, 2023. "The Emerging Role of Plant-Based Building Materials in the Construction Industry—A Bibliometric Analysis," Resources, MDPI, vol. 12(10), pages 1-16, October.
  • Handle: RePEc:gam:jresou:v:12:y:2023:i:10:p:124-:d:1263281
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/12/10/124/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/12/10/124/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mingming Hu & Ester Van Der Voet & Gjalt Huppes, 2010. "Dynamic Material Flow Analysis for Strategic Construction and Demolition Waste Management in Beijing," Journal of Industrial Ecology, Yale University, vol. 14(3), pages 440-456, June.
    2. Amjad Almusaed & Asaad Almssad & Asaad Alasadi & Ibrahim Yitmen & Sammera Al-Samaraee, 2023. "Assessing the Role and Efficiency of Thermal Insulation by the “BIO-GREEN PANEL” in Enhancing Sustainability in a Built Environment," Sustainability, MDPI, vol. 15(13), pages 1-25, July.
    3. Mahmoud Sodangi & Zaheer Abbas Kazmi, 2020. "Integrated Evaluation of the Impediments to the Adoption of Coconut Palm Wood as a Sustainable Material for Building Construction," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    4. Seyed Meysam Khoshnava & Raheleh Rostami & Rosli Mohamad Zin & Dalia Štreimikienė & Abbas Mardani & Mohammad Ismail, 2020. "The Role of Green Building Materials in Reducing Environmental and Human Health Impacts," IJERPH, MDPI, vol. 17(7), pages 1-22, April.
    5. Willi Haas & Fridolin Krausmann & Dominik Wiedenhofer & Markus Heinz, 2015. "How Circular is the Global Economy?: An Assessment of Material Flows, Waste Production, and Recycling in the European Union and the World in 2005," Journal of Industrial Ecology, Yale University, vol. 19(5), pages 765-777, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eleazar Chidiadi & Ahmad Taki, 2025. "Examining the Impact of Multilevel Courtyards in Hot-Dry and Humid Climates," Energies, MDPI, vol. 18(10), pages 1-35, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierluigi Morano & Francesco Tajani & Felicia Di Liddo & Paola Amoruso, 2024. "A Feasibility Analysis of Energy Retrofit Initiatives Aimed at the Existing Property Assets Decarbonisation," Sustainability, MDPI, vol. 16(8), pages 1-19, April.
    2. Millar, Neal & McLaughlin, Eoin & Börger, Tobias, 2019. "The Circular Economy: Swings and Roundabouts?," Ecological Economics, Elsevier, vol. 158(C), pages 11-19.
    3. Colin M. Rose & Julia A. Stegemann, 2018. "From Waste Management to Component Management in the Construction Industry," Sustainability, MDPI, vol. 10(1), pages 1-21, January.
    4. Kamran Khan & Thomas Henschel, 2024. "LCT-Based Framework for the Assessment of Sustainability: From the Perspective of Literature Review," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 175(3), pages 1-20, December.
    5. Tariq Javed & Fareyha Said & Dalilawati Zainal & Azlina Abdul Jalil, 2024. "Circular Economy Implementation Status of Selected ASEAN Countries," SAGE Open, , vol. 14(1), pages 21582440231, March.
    6. O'Donovan, Nick, 2024. "Turning less into more: Measuring real GDP growth in the green transition," Ecological Economics, Elsevier, vol. 224(C).
    7. Piciu Gabriela-Cornelia, 2021. "Ways To Accelerate The Circular Economy," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 5, pages 129-134, October.
    8. Concepción Garcés-Ayerbe & Pilar Rivera-Torres & Inés Suárez-Perales & Dante I. Leyva-de la Hiz, 2019. "Is It Possible to Change from a Linear to a Circular Economy? An Overview of Opportunities and Barriers for European Small and Medium-Sized Enterprise Companies," IJERPH, MDPI, vol. 16(5), pages 1-15, March.
    9. Chembessi Chedrak & Gohoungodji Paulin & Juste Rajaonson, 2023. "“A fine wine, better with age”: Circular economy historical roots and influential publications: A bibliometric analysis using Reference Publication Year Spectroscopy (RPYS)," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1593-1612, December.
    10. Andreea Loredana Bîrgovan & Elena Simina Lakatos & Andrea Szilagyi & Lucian Ionel Cioca & Roxana Lavinia Pacurariu & George Ciobanu & Elena Cristina Rada, 2022. "How Should We Measure? A Review of Circular Cities Indicators," IJERPH, MDPI, vol. 19(9), pages 1-16, April.
    11. Lucas Becerra & Sebastián Carenzo & Paula Juarez, 2020. "When Circular Economy Meets Inclusive Development. Insights from Urban Recycling and Rural Water Access in Argentina," Sustainability, MDPI, vol. 12(23), pages 1-21, November.
    12. Tony Addison & Alan R. Roe, 2024. "Extractive industries: imperatives, opportunities, and dilemmas in the net-zero transition," WIDER Working Paper Series wp-2024-26, World Institute for Development Economic Research (UNU-WIDER).
    13. Korhonen, Jouni & Honkasalo, Antero & Seppälä, Jyri, 2018. "Circular Economy: The Concept and its Limitations," Ecological Economics, Elsevier, vol. 143(C), pages 37-46.
    14. Dominik Noll & Christian Lauk & Willi Haas & Simron Jit Singh & Panos Petridis & Dominik Wiedenhofer, 2022. "The sociometabolic transition of a small Greek island: Assessing stock dynamics, resource flows, and material circularity from 1929 to 2019," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 577-591, April.
    15. Luo, Anran & Rodríguez, Fabricio & Leipold, Sina, 2020. "Explaining the political gridlock behind international Circular Economy: Chinese and European perspectives on the Waste Ban," SocArXiv uyw5g, Center for Open Science.
    16. Henrique Oliveira & Víctor Moutinho, 2021. "Renewable Energy, Economic Growth and Economic Development Nexus: A Bibliometric Analysis," Energies, MDPI, vol. 14(15), pages 1-28, July.
    17. Dafermos, Yannis & Nikolaidi, Maria & Galanis, Giorgos, 2017. "A stock-flow-fund ecological macroeconomic model," Ecological Economics, Elsevier, vol. 131(C), pages 191-207.
    18. Arru, Brunella & Furesi, Roberto & Pulina, Pietro & Sau, Paola & Madau, Fabio A., 2022. "The Circular Economy in the Agri-food system: A Performance Measurement of European Countries," Economia agro-alimentare / Food Economy, Italian Society of Agri-food Economics/Società Italiana di Economia Agro-Alimentare (SIEA), vol. 24(2), September.
    19. Pilar Buil & Olga Roger-Loppacher & Rejina M. Selvam & Vanessa Prieto-Sandoval, 2017. "The Involvement of Future Generations in the Circular Economy Paradigm: An Empirical Analysis on Aluminium Packaging Recycling in Spain," Sustainability, MDPI, vol. 9(12), pages 1-13, December.
    20. Miatto, Alessio & Schandl, Heinz & Tanikawa, Hiroki, 2017. "How important are realistic building lifespan assumptions for material stock and demolition waste accounts?," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 143-154.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:12:y:2023:i:10:p:124-:d:1263281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.