IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i21p7824-d434837.html
   My bibliography  Save this article

Application of Epidemiological Geographic Information System: An Open-Source Spatial Analysis Tool Based on the OMOP Common Data Model

Author

Listed:
  • Jaehyeong Cho

    (Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea
    These authors contributed equally to this work.)

  • Seng Chan You

    (Department of Biomedical Informatics, Ajou University School of Medicine, Suwon 16499, Korea
    These authors contributed equally to this work.)

  • Seongwon Lee

    (Department of Biomedical Informatics, Ajou University School of Medicine, Suwon 16499, Korea)

  • DongSu Park

    (Department of Biomedical Informatics, Ajou University School of Medicine, Suwon 16499, Korea)

  • Bumhee Park

    (Department of Biomedical Informatics, Ajou University School of Medicine, Suwon 16499, Korea
    Office of Biostatistics, Ajou Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon 16499, Korea)

  • George Hripcsak

    (Department of Biomedical Informatics, Columbia University Medical Center, New York, NY 10032, USA
    Medical Informatics Services, New York-Presbyterian Hospital, New York, NY 10032, USA)

  • Rae Woong Park

    (Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea
    Department of Biomedical Informatics, Ajou University School of Medicine, Suwon 16499, Korea)

Abstract

Background: Spatial epidemiology is used to evaluate geographical variations and disparities in health outcomes; however, constructing geographic statistical models requires a labor-intensive process that limits the overall utility. We developed an open-source software for spatial epidemiological analysis and demonstrated its applicability and quality. Methods: Based on standardized geocode and observational health data, the Application of Epidemiological Geographic Information System (AEGIS) provides two spatial analysis methods: disease mapping and detecting clustered medical conditions and outcomes. The AEGIS assesses the geographical distribution of incidences and health outcomes in Korea and the United States, specifically incidence of cancers and their mortality rates, endemic malarial areas, and heart diseases (only the United States). Results: The AEGIS-generated spatial distribution of incident cancer in Korea was consistent with previous reports. The incidence of liver cancer in women with the highest Moran’s I (0.44; p < 0.001) was 17.4 (10.3–26.9). The malarial endemic cluster was identified in Paju-si, Korea ( p < 0.001). When the AEGIS was applied to the database of the United States, a heart disease cluster was appropriately identified ( p < 0.001). Conclusions: As an open-source, cross-country, spatial analytics solution, AEGIS may globally assess the differences in geographical distribution of health outcomes through the use of standardized geocode and observational health databases.

Suggested Citation

  • Jaehyeong Cho & Seng Chan You & Seongwon Lee & DongSu Park & Bumhee Park & George Hripcsak & Rae Woong Park, 2020. "Application of Epidemiological Geographic Information System: An Open-Source Spatial Analysis Tool Based on the OMOP Common Data Model," IJERPH, MDPI, vol. 17(21), pages 1-14, October.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:21:p:7824-:d:434837
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/21/7824/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/21/7824/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lindgren, Finn & Rue, Håvard, 2015. "Bayesian Spatial Modelling with R-INLA," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i19).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sharifah Saffinas Syed Soffian & Azmawati Mohammed Nawi & Rozita Hod & Huan-Keat Chan & Muhammad Radzi Abu Hassan, 2021. "Area-Level Determinants in Colorectal Cancer Spatial Clustering Studies: A Systematic Review," IJERPH, MDPI, vol. 18(19), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cho, Daegon & Hwang, Youngdeok & Park, Jongwon, 2018. "More buzz, more vibes: Impact of social media on concert distribution," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 103-113.
    2. Ruiman Zhong & Paula Moraga, 2024. "Bayesian Hierarchical Models for the Combination of Spatially Misaligned Data: A Comparison of Melding and Downscaler Approaches Using INLA and SPDE," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(1), pages 110-129, March.
    3. Johnson, Blair T. & Sisti, Anthony & Bernstein, Mary & Chen, Kun & Hennessy, Emily A. & Acabchuk, Rebecca L. & Matos, Michaela, 2021. "Community-level factors and incidence of gun violence in the United States, 2014–2017," Social Science & Medicine, Elsevier, vol. 280(C).
    4. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    5. C. Forlani & S. Bhatt & M. Cameletti & E. Krainski & M. Blangiardo, 2020. "A joint Bayesian space–time model to integrate spatially misaligned air pollution data in R‐INLA," Environmetrics, John Wiley & Sons, Ltd., vol. 31(8), December.
    6. Divan A. Burger & Sean van der Merwe & Emmanuel Lesaffre & Peter C. le Roux & Morgan J. Raath‐Krüger, 2023. "A robust mixed‐effects parametric quantile regression model for continuous proportions: Quantifying the constraints to vitality in cushion plants," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(4), pages 444-470, November.
    7. Sameh Abdulah & Yuxiao Li & Jian Cao & Hatem Ltaief & David E. Keyes & Marc G. Genton & Ying Sun, 2023. "Large‐scale environmental data science with ExaGeoStatR," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    8. André Victor Ribeiro Amaral & Elias Teixeira Krainski & Ruiman Zhong & Paula Moraga, 2024. "Model-Based Geostatistics Under Spatially Varying Preferential Sampling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 766-792, December.
    9. John M. Humphreys & Robert B. Srygley & David H. Branson, 2022. "Geographic Variation in Migratory Grasshopper Recruitment under Projected Climate Change," Geographies, MDPI, vol. 2(1), pages 1-19, January.
    10. Tyler Andrew Scott & Nicola Ulibarri & Omar Perez Figueroa, 2020. "NEPA and National Trends in Federal Infrastructure Siting in the United States," Review of Policy Research, Policy Studies Organization, vol. 37(5), pages 605-633, September.
    11. Getayeneh Antehunegn Tesema & Zemenu Tadesse Tessema & Stephane Heritier & Rob G. Stirling & Arul Earnest, 2023. "A Systematic Review of Joint Spatial and Spatiotemporal Models in Health Research," IJERPH, MDPI, vol. 20(7), pages 1-24, March.
    12. Álvaro Briz-Redón, 2021. "Respondent Burden Effects on Item Non-Response and Careless Response Rates: An Analysis of Two Types of Surveys," Mathematics, MDPI, vol. 9(17), pages 1-16, August.
    13. Dong Liang & Genevieve Nesslage & Michael Wilberg & Thomas Miller, 2017. "Bayesian Calibration of Blue Crab (Callinectes sapidus) Abundance Indices Based on Probability Surveys," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 481-497, December.
    14. Silius M. Vandeskog & Sara Martino & Daniela Castro-Camilo & Håvard Rue, 2022. "Modelling Sub-daily Precipitation Extremes with the Blended Generalised Extreme Value Distribution," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 598-621, December.
    15. Humphreys, John M. & Srygley, Robert B. & Lawton, Douglas & Hudson, Amy R. & Branson, David H., 2022. "Grasshoppers exhibit asynchrony and spatial non-stationarity in response to the El Niño/Southern and Pacific Decadal Oscillations," Ecological Modelling, Elsevier, vol. 471(C).
    16. Carlos Díaz-Avalos & Pablo Juan & Somnath Chaudhuri & Marc Sáez & Laura Serra, 2020. "Association between the New COVID-19 Cases and Air Pollution with Meteorological Elements in Nine Counties of New York State," IJERPH, MDPI, vol. 17(23), pages 1-18, December.
    17. Beręsewicz Maciej, 2019. "Correlates of Representation Errors in Internet Data Sources for Real Estate Market," Journal of Official Statistics, Sciendo, vol. 35(3), pages 509-529, September.
    18. Deslatte, Aaron & Scott, Tyler A. & Carter, David P., 2019. "Specialized governance and regional land-use outcomes: A spatial analysis of Florida community development districts," Land Use Policy, Elsevier, vol. 83(C), pages 227-239.
    19. Tim C. D. Lucas & Anita K. Nandi & Elisabeth G. Chestnutt & Katherine A. Twohig & Suzanne H. Keddie & Emma L. Collins & Rosalind E. Howes & Michele Nguyen & Susan F. Rumisha & Andre Python & Rohan Ara, 2021. "Mapping malaria by sharing spatial information between incidence and prevalence data sets," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 733-749, June.
    20. Chiranjit Dutta & Nalini Ravishanker & Sumanta Basu, 2022. "Modeling Multivariate Positive-Valued Time Series Using R-INLA," Papers 2206.05374, arXiv.org, revised Jul 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:21:p:7824-:d:434837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.