IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i3p313-d200384.html
   My bibliography  Save this article

The Urban Heat Island in an Urban Context: A Case Study of Mashhad, Iran

Author

Listed:
  • Marzie Naserikia

    (Department of Urban Planning, Tarbiat Modares University, Nasr, Jalal AleAhmad, Tehran 14115-335, Iran)

  • Elyas Asadi Shamsabadi

    (Department of Civil Engineering, Ferdowsi University of Mashhad, Azadi Square, Mashhad 9177948974, Iran)

  • Mojtaba Rafieian

    (Department of Urban Planning, Faculty of Arts and Architecture, Tarbiat Modares University, Nasr, Jalal AleAhmad, P.O.Box 14115-111, Tehran, Iran)

  • Walter Leal Filho

    (Research and Transfer Centre “Sustainable development and Climate Change Management”, Hamburg University of Applied Sciences, Ulmenliet 20, D-21033 Hamburg, Germany)

Abstract

In this study, the spatio-temporal changes of urban heat island (UHI) in a mega city located in a semi-arid region and the relationships with normalized difference vegetation index (NDVI) and normalized difference built-up index (NDBI) are appraised using Landsat TM/OLI images with the help of ENVI and ArcGIS software. The results reveal that the relationships between NDBI, NDVI and land surface temperature (LST) varied by year in the study area and they are not suitable indices to study the land surface temperature in arid and semi-arid regions. The study also highlights the importance of weather conditions when appraising the relationship of these indices with land surface temperature. Overall, it can be concluded that LST in arid and steppe regions is most influenced by barren soil. As a result, built-up areas surrounded by soil or bituminous asphalt experience higher land surface temperatures compared to densely built-up areas. Therefore, apart from setting-up more green areas, an effective way to reduce the intensity of UHI in these regions is to develop the use of cool and smart pavements. The experiences from this paper may be of use to cities, many of which are struggling to adapt to a changing climate.

Suggested Citation

  • Marzie Naserikia & Elyas Asadi Shamsabadi & Mojtaba Rafieian & Walter Leal Filho, 2019. "The Urban Heat Island in an Urban Context: A Case Study of Mashhad, Iran," IJERPH, MDPI, vol. 16(3), pages 1-21, January.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:3:p:313-:d:200384
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/3/313/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/3/313/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Azari, Kian Ahmadi & Arintono, Sulistyo & Hamid, Hussain & Davoodi, Seyed Rasoul, 2013. "Evaluation of demand for different trip purposes under various congestion pricing scenarios," Journal of Transport Geography, Elsevier, vol. 29(C), pages 43-51.
    2. Marcos Vinicius Bueno de Morais & Edmilson Dias de Freitas & Edson R. Marciotto & Viviana Vanesa Urbina Guerrero & Leila Droprinchinski Martins & Jorge Alberto Martins, 2018. "Implementation of Observed Sky-View Factor in a Mesoscale Model for Sensitivity Studies of the Urban Meteorology," Sustainability, MDPI, vol. 10(7), pages 1-15, June.
    3. Santamouris, M., 2013. "Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 224-240.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manuel José Delgado-Capel & Paloma Cariñanos & Marcos Escudero-Viñolo, 2023. "Capacity of Urban Green Infrastructure Spaces to Ameliorate Heat Wave Impacts in Mediterranean Compact Cities: Case Study of Granada (South-Eastern Spain)," Land, MDPI, vol. 12(5), pages 1-18, May.
    2. Haruna M. Moda & Walter Leal Filho & Aprajita Minhas, 2019. "Impacts of Climate Change on Outdoor Workers and Their Safety: Some Research Priorities," IJERPH, MDPI, vol. 16(18), pages 1-21, September.
    3. Sashikanta Sahoo & Atin Majumder & Sabyasachi Swain & Gareema & Brijendra Pateriya & Nadhir Al-Ansari, 2022. "Analysis of Decadal Land Use Changes and Its Impacts on Urban Heat Island (UHI) Using Remote Sensing-Based Approach: A Smart City Perspective," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    4. Taher Safarrad & Mostafa Ghadami & Andreas Dittmann, 2022. "Effects of COVID-19 Restriction Policies on Urban Heat Islands in Some European Cities: Berlin, London, Paris, Madrid, and Frankfurt," IJERPH, MDPI, vol. 19(11), pages 1-25, May.
    5. Jaehyun Ha & Yeri Choi & Sugie Lee & Kyushik Oh, 2020. "Diurnal and Seasonal Variations in the Effect of Urban Environmental Factors on Air Temperature: A Consecutive Regression Analysis Approach," IJERPH, MDPI, vol. 17(2), pages 1-21, January.
    6. Rong Huang & Mei Yang & Guohua Lin & Xiaoyan Ma & Xuan Wang & Qian Huang & Tian Zhang, 2022. "Cooling Effect of Green Space and Water on Urban Heat Island and the Perception of Residents: A Case Study of Xi’an City," IJERPH, MDPI, vol. 19(22), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamshidi, Ali & Kurumisawa, Kiyofumi & Nawa, Toyoharu & Igarashi, Toshifumi, 2016. "Performance of pavements incorporating waste glass: The current state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 211-236.
    2. Ning Li & Yuxiang Tian & Biao Ma & Dongxia Hu, 2022. "Experimental Investigation of Water-Retaining and Mechanical Behaviors of Unbound Granular Materials under Infiltration," Sustainability, MDPI, vol. 14(3), pages 1-17, January.
    3. Qin, Yinghong, 2015. "A review on the development of cool pavements to mitigate urban heat island effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 445-459.
    4. Bonggeun Song & Kyunghun Park, 2019. "Analysis of Spatiotemporal Urban Temperature Characteristics by Urban Spatial Patterns in Changwon City, South Korea," Sustainability, MDPI, vol. 11(14), pages 1-21, July.
    5. Taleghani, Mohammad, 2018. "Outdoor thermal comfort by different heat mitigation strategies- A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2011-2018.
    6. Milenković, Marina & Glavić, Draženko & Maričić, Milica, 2019. "Determining factors affecting congestion pricing acceptability," Transport Policy, Elsevier, vol. 82(C), pages 58-74.
    7. Renato Soares & Helena Corvacho & Fernando Alves, 2021. "Summer Thermal Conditions in Outdoor Public Spaces: A Case Study in a Mediterranean Climate," Sustainability, MDPI, vol. 13(10), pages 1-26, May.
    8. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    9. Xijie Li & Ying Lv & Wei Sun & Li Zhou, 2019. "Cordon- or Link-Based Pricing: Environment-Oriented Toll Design Models Development and Application," Sustainability, MDPI, vol. 11(1), pages 1-16, January.
    10. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    11. Karol Bandurski & Hanna Bandurska & Ewa Kazimierczak-Grygiel & Halina Koczyk, 2020. "The Green Structure for Outdoor Places in Dry, Hot Regions and Seasons—Providing Human Thermal Comfort in Sustainable Cities," Energies, MDPI, vol. 13(11), pages 1-24, June.
    12. Ulpiani, Giulia, 2019. "Water mist spray for outdoor cooling: A systematic review of technologies, methods and impacts," Applied Energy, Elsevier, vol. 254(C).
    13. Salim Ferwati & Cynthia Skelhorn & Vivek Shandas & Yasuyo Makido, 2019. "A Comparison of Neighborhood-Scale Interventions to Alleviate Urban Heat in Doha, Qatar," Sustainability, MDPI, vol. 11(3), pages 1-20, January.
    14. Kuldeep Kavta & Arkopal K. Goswami, 2021. "A methodological framework for a priori selection of travel demand management package using fuzzy MCDM methods," Transportation, Springer, vol. 48(6), pages 3059-3084, December.
    15. Maria Makropoulou, 2017. "Microclimate Improvement of Inner-City Urban Areas in a Mediterranean Coastal City," Sustainability, MDPI, vol. 9(6), pages 1-29, May.
    16. Martina Giorio & Rossana Paparella, 2023. "Climate Mitigation Strategies: The Use of Cool Pavements," Sustainability, MDPI, vol. 15(9), pages 1-26, May.
    17. Nikolaos Sylliris & Apostolos Papagiannakis & Aristotelis Vartholomaios, 2023. "Improving the Climate Resilience of Urban Road Networks: A Simulation of Microclimate and Air Quality Interventions in a Typology of Streets in Thessaloniki Historic Centre," Land, MDPI, vol. 12(2), pages 1-24, February.
    18. Castaldo, Veronica Lucia & Pisello, Anna Laura & Piselli, Cristina & Fabiani, Claudia & Cotana, Franco & Santamouris, Mattheos, 2018. "How outdoor microclimate mitigation affects building thermal-energy performance: A new design-stage method for energy saving in residential near-zero energy settlements in Italy," Renewable Energy, Elsevier, vol. 127(C), pages 920-935.
    19. Marcos Vinicius Bueno de Morais & Viviana Vanesa Urbina Guerrero & Edmilson Dias de Freitas & Edson R. Marciotto & Hugo Valdés & Christian Correa & Roberto Agredano & Ismael Vera-Puerto, 2019. "Sensitivity of Radiative and Thermal Properties of Building Material in the Urban Atmosphere," Sustainability, MDPI, vol. 11(23), pages 1-15, December.
    20. Shi Yin & Werner Lang & Yiqiang Xiao & Zhao Xu, 2019. "Correlative Impact of Shading Strategies and Configurations Design on Pedestrian-Level Thermal Comfort in Traditional Shophouse Neighbourhoods, Southern China," Sustainability, MDPI, vol. 11(5), pages 1-26, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:3:p:313-:d:200384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.