IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p11892-d920854.html
   My bibliography  Save this article

Analysis of Decadal Land Use Changes and Its Impacts on Urban Heat Island (UHI) Using Remote Sensing-Based Approach: A Smart City Perspective

Author

Listed:
  • Sashikanta Sahoo

    (Punjab Remote Sensing Centre, Ludhiana 141004, India)

  • Atin Majumder

    (Department of Climate Change and Agricultural Meteorology, Punjab Agricultural University, Ludhiana 141004, India)

  • Sabyasachi Swain

    (Department of Water Resources Development and Management, Indian Institute of Technology Roorkee, Roorkee 247667, India)

  • Gareema

    (Department of Geography, Panjab University, Chandigarh 160014, India)

  • Brijendra Pateriya

    (Punjab Remote Sensing Centre, Ludhiana 141004, India)

  • Nadhir Al-Ansari

    (Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, 971 87 Lulea, Sweden)

Abstract

The land surface temperature (LST) pattern is regarded as one of the most important indicators of the environmental consequences of land use/land cover change. The possible contribution of land surface to the warming phenomenon is being investigated by scientists across the world. This research focuses on variations in surface temperature and urban heat islands (UHIs) over the course of two seasons, i.e., winter and summer. Using remotely sensed datasets and geospatial techniques, an attempt was made to analyze the spatiotemporal variation in urban heat islands (UHIs) and its association with LULC over Chandigarh from 2000 to 2020. The Enhanced Built-up and Bareness Index (EBBI), Dry Built-up Index (DBI), and Dry Bare-Soil Index (DBSI) were used to identify built-up areas in the city. The results revealed an increase of 10.08% in BA, whereas the vegetation decreased by 4.5% over the study period, which is in close agreement with the EBBI, DBI, and DBSI assessments. From 2000 to 2020, the UHI intensities increased steadily in both the summer and winter seasons. Dense built-up areas such as the industrial unit of the city possessed the highest UHI index (>0.7) values.

Suggested Citation

  • Sashikanta Sahoo & Atin Majumder & Sabyasachi Swain & Gareema & Brijendra Pateriya & Nadhir Al-Ansari, 2022. "Analysis of Decadal Land Use Changes and Its Impacts on Urban Heat Island (UHI) Using Remote Sensing-Based Approach: A Smart City Perspective," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:11892-:d:920854
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/11892/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/11892/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manish Ramaiah & Ram Avtar & Md. Mustafizur Rahman, 2020. "Land Cover Influences on LST in Two Proposed Smart Cities of India: Comparative Analysis Using Spectral Indices," Land, MDPI, vol. 9(9), pages 1-21, August.
    2. Weibo Liu & Johannes Feddema & Leiqiu Hu & Ashley Zung & Nathaniel Brunsell, 2017. "Seasonal and Diurnal Characteristics of Land Surface Temperature and Major Explanatory Factors in Harris County, Texas," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    3. Atin Majumder & Raj Setia & P. K. Kingra & Harjinder Sembhi & Som Pal Singh & Brijendra Pateriya, 2021. "Estimation of land surface temperature using different retrieval methods for studying the spatiotemporal variations of surface urban heat and cold islands in Indian Punjab," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 15921-15942, November.
    4. Marzie Naserikia & Elyas Asadi Shamsabadi & Mojtaba Rafieian & Walter Leal Filho, 2019. "The Urban Heat Island in an Urban Context: A Case Study of Mashhad, Iran," IJERPH, MDPI, vol. 16(3), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaehyun Ha & Yeri Choi & Sugie Lee & Kyushik Oh, 2020. "Diurnal and Seasonal Variations in the Effect of Urban Environmental Factors on Air Temperature: A Consecutive Regression Analysis Approach," IJERPH, MDPI, vol. 17(2), pages 1-21, January.
    2. Yuting Lu & Penghai Wu & Kaijian Xu, 2022. "Multi-Time Scale Analysis of Urbanization in Urban Thermal Environment in Major Function-Oriented Zones at Landsat-Scale: A Case Study of Hefei City, China," Land, MDPI, vol. 11(5), pages 1-19, May.
    3. Bing Li & Zhifeng Liu & Ying Nan & Shengnan Li & Yanmin Yang, 2018. "Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    4. David Hidalgo García, 2023. "Evaluation and Analysis of the Effectiveness of the Main Mitigation Measures against Surface Urban Heat Islands in Different Local Climate Zones through Remote Sensing," Sustainability, MDPI, vol. 15(13), pages 1-23, July.
    5. Jeong-Hee Eum & Kwon Kim & Eung-Ho Jung & Paikho Rho, 2018. "Evaluation and Utilization of Thermal Environment Associated with Policy: A Case Study of Daegu Metropolitan City in South Korea," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    6. Rong Huang & Mei Yang & Guohua Lin & Xiaoyan Ma & Xuan Wang & Qian Huang & Tian Zhang, 2022. "Cooling Effect of Green Space and Water on Urban Heat Island and the Perception of Residents: A Case Study of Xi’an City," IJERPH, MDPI, vol. 19(22), pages 1-19, November.
    7. Dorijan Radočaj & Jasmina Obhođaš & Mladen Jurišić & Mateo Gašparović, 2020. "Global Open Data Remote Sensing Satellite Missions for Land Monitoring and Conservation: A Review," Land, MDPI, vol. 9(11), pages 1-24, October.
    8. Taher Safarrad & Mostafa Ghadami & Andreas Dittmann & Mousa Pazhuhan (Panahandeh Khah), 2021. "Tourism Effect on the Spatiotemporal Pattern of Land Surface Temperature (LST): Babolsar and Fereydonkenar Cities (Cases Study in Iran)," Land, MDPI, vol. 10(9), pages 1-25, September.
    9. Bo Tie & Fang Huang & Jian Tao & Jun Lu & Dongwei Qiu, 2018. "A Parallel and Optimization Approach for Land-Surface Temperature Retrieval on a Windows-Based PC Cluster," Sustainability, MDPI, vol. 10(3), pages 1-17, February.
    10. Victor Gonzalez & Manuel Peralta & Juan Faxas-Guzmán & Yokasta García Frómeta, 2022. "Real-Time Environmental Monitoring Platform for Wellness and Preventive Care in a Smart and Sustainable City with an Urban Landscape Perspective: The Case of Developing Countries," Land, MDPI, vol. 11(10), pages 1-19, September.
    11. Taher Safarrad & Mostafa Ghadami & Andreas Dittmann, 2022. "Effects of COVID-19 Restriction Policies on Urban Heat Islands in Some European Cities: Berlin, London, Paris, Madrid, and Frankfurt," IJERPH, MDPI, vol. 19(11), pages 1-25, May.
    12. Manuel José Delgado-Capel & Paloma Cariñanos & Marcos Escudero-Viñolo, 2023. "Capacity of Urban Green Infrastructure Spaces to Ameliorate Heat Wave Impacts in Mediterranean Compact Cities: Case Study of Granada (South-Eastern Spain)," Land, MDPI, vol. 12(5), pages 1-18, May.
    13. Yinuo Xu & Chunxiao Zhang & Wei Hou, 2022. "Modeling of Daytime and Nighttime Surface Urban Heat Island Distribution Combined with LCZ in Beijing, China," Land, MDPI, vol. 11(11), pages 1-21, November.
    14. Haruna M. Moda & Walter Leal Filho & Aprajita Minhas, 2019. "Impacts of Climate Change on Outdoor Workers and Their Safety: Some Research Priorities," IJERPH, MDPI, vol. 16(18), pages 1-21, September.
    15. Filoteo Gomez-Martinez & Kirsten M. de Beurs & Jennifer Koch & Jeffrey Widener, 2021. "Multi-Temporal Land Surface Temperature and Vegetation Greenness in Urban Green Spaces of Puebla, Mexico," Land, MDPI, vol. 10(2), pages 1-25, February.
    16. Qiang Fan & Yue Shi & Xiaonan Song & Hui Li & Wei Sun & Feng Wu, 2022. "Evolution Analysis of the Coupling Coordination of Microclimate and Landscape Ecological Risk Degree in the Xiahuayuan District in Recent 20 Years," Sustainability, MDPI, vol. 14(3), pages 1-13, February.
    17. Shahfahad & Swapan Talukdar & Mohd. Rihan & Hoang Thi Hang & Sunil Bhaskaran & Atiqur Rahman, 2022. "Modelling urban heat island (UHI) and thermal field variation and their relationship with land use indices over Delhi and Mumbai metro cities," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3762-3790, March.
    18. Patryk Antoszewski & Michał Krzyżaniak & Dariusz Świerk, 2022. "The Future of Climate-Resilient and Climate-Neutral City in the Temperate Climate Zone," IJERPH, MDPI, vol. 19(7), pages 1-60, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:11892-:d:920854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.