IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i23p4805-d292435.html
   My bibliography  Save this article

Ecological Security Assessment Based on Ecological Footprint Approach in Hulunbeir Grassland, China

Author

Listed:
  • Shanshan Guo

    (School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China)

  • Yinghong Wang

    (School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

Hulunbeir grassland, as a crucial ecological barrier and energy supply base in northwest China, suffers from a fragile ecological environment. Therefore, it is crucially important for Hulunbeir grassland to achieve the sustainable development of its social economies and ecological environments through the evaluation of its ecological security. This paper introduces the indexes of the ecological pressure index (EPI), ecological footprint diversity index (EFDI), and ecological coordination coefficient (ECC) based on the ecological footprint model. Furthermore, the Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT) model was applied to analyze the main driving factors of the change of the ecological footprint. The results showed that: The ecological footprint (EF) per capita of Hulunbeir grassland has nearly doubled in 11 years to 11.04 ha/cap in 2016, while the ecological capacity (EC) per capita was rather low and increased slowly, leading to a continuous increase of per capita ecological deficit (ED) (from 5.7113 ha/cap to 11.0937 ha/cap). Within this, the footprint of fossil energy land and grassland contributed the most to the total EF, and forestland and cropland played the major role in EC. The EPI increased from 0.82 in 2006 to 1.25 in 2016, leading the level of ecological security to increase from level 3 (moderately safe) to level 4 (moderately risky). The indexes of the EFDI and ECC both reached a minimum in 2014 and then began to rise, indicating that Hulunbeir steppe’s ecological environment, as well as its coordination with economy, was considered to be worse in 2014 but then gradually ameliorated. The STIRPAT model indicated that the main factors driving the EF increase were per capita GDP and the proportion of secondary industry, while the decrease of unit GDP energy consumption played an effective role in curbing the continuous growth of the EF. These findings not only have realistic significance in promoting the coordinated development between economy and natural resource utilization under the constraint of fragile environment, but also provide a scientific reference for similar energy-rich ecologically fragile regions.

Suggested Citation

  • Shanshan Guo & Yinghong Wang, 2019. "Ecological Security Assessment Based on Ecological Footprint Approach in Hulunbeir Grassland, China," IJERPH, MDPI, vol. 16(23), pages 1-16, November.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:23:p:4805-:d:292435
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/23/4805/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/23/4805/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chai, Jian & Liang, Ting & Lai, Kin Keung & Zhang, Zhe George & Wang, Shouyang, 2018. "The future natural gas consumption in China: Based on the LMDI-STIRPAT-PLSR framework and scenario analysis," Energy Policy, Elsevier, vol. 119(C), pages 215-225.
    2. Teixidó-Figueras, Jordi & Duro, Juan Antonio, 2015. "The building blocks of International Ecological Footprint inequality: A Regression-Based Decomposition," Ecological Economics, Elsevier, vol. 118(C), pages 30-39.
    3. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    4. Chen, Pi-Cheng & Crawford-Brown, Douglas & Chang, Chi-Hui & Ma, Hwong-wen, 2014. "Identifying the drivers of environmental risk through a model integrating substance flow and input–output analysis," Ecological Economics, Elsevier, vol. 107(C), pages 94-103.
    5. Wackernagel, Mathis & Onisto, Larry & Bello, Patricia & Callejas Linares, Alejandro & Susana Lopez Falfan, Ina & Mendez Garcia, Jesus & Isabel Suarez Guerrero, Ana & Guadalupe Suarez Guerrero, Ma., 1999. "National natural capital accounting with the ecological footprint concept," Ecological Economics, Elsevier, vol. 29(3), pages 375-390, June.
    6. Huang, Chu-Long & Vause, Jonathan & Ma, Hwong-Wen & Yu, Chang-Ping, 2012. "Using material/substance flow analysis to support sustainable development assessment: A literature review and outlook," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 104-116.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanlong Guo & Xingmeng Ma & Yelin Zhu & Denghang Chen & Han Zhang, 2023. "Research on Driving Factors of Forest Ecological Security: Evidence from 12 Provincial Administrative Regions in Western China," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
    2. Zhu, Benhui & Hashimoto, Shizuka & Cushman, Samuel A, 2023. "A two concentric circles model incorporating availability of ecosystem services and affordability of humans to clarify the ecological security concept," Ecological Modelling, Elsevier, vol. 481(C).
    3. Xiaoyang Liu & Ming Wei & Jian Zeng, 2020. "Simulating Urban Growth Scenarios Based on Ecological Security Pattern: A Case Study in Quanzhou, China," IJERPH, MDPI, vol. 17(19), pages 1-20, October.
    4. Mengting Chen & Liang Zheng & Dike Zhang & Jiangfeng Li, 2022. "Spatio-Temporal Evolution and Obstacle Factors Analysis of Tourism Ecological Security in Huanggang Dabieshan UNESCO Global Geopark," IJERPH, MDPI, vol. 19(14), pages 1-22, July.
    5. Shanshan Guo & Yinghong Wang & Jiu Huang & Jihong Dong & Jian Zhang, 2021. "Decoupling and Decomposition Analysis of Land Natural Capital Utilization and Economic Growth: A Case Study in Ningxia Hui Autonomous Region, China," IJERPH, MDPI, vol. 18(2), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Junsong & Deng, Hongbing & Duan, Jing & Zhao, Jingzhu, 2009. "Analysis of the major drivers of the ecological footprint using the STIRPAT model and the PLS method--A case study in Henan Province, China," Ecological Economics, Elsevier, vol. 68(11), pages 2818-2824, September.
    2. Junxue Zhang & Lin Ma, 2021. "Urban ecological security dynamic analysis based on an innovative emergy ecological footprint method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16163-16191, November.
    3. Feng Dong & Bolin Yu & Yifei Hua & Shuaiqing Zhang & Yue Wang, 2018. "A Comparative Analysis of Residential Energy Consumption in Urban and Rural China: Determinants and Regional Disparities," IJERPH, MDPI, vol. 15(11), pages 1-19, November.
    4. Vélez-Henao, Johan-Andrés & Font Vivanco, David & Hernández-Riveros, Jesús-Antonio, 2019. "Technological change and the rebound effect in the STIRPAT model: A critical view," Energy Policy, Elsevier, vol. 129(C), pages 1372-1381.
    5. Shuai Liu & Fei Fan & Jianqing Zhang, 2019. "Are Small Cities More Environmentally Friendly? An Empirical Study from China," IJERPH, MDPI, vol. 16(5), pages 1-16, February.
    6. Asici, Ahmet Atıl, 2011. "Economic growth and its impact on environment: A panel data analysis," MPRA Paper 30238, University Library of Munich, Germany.
    7. Xiaowei Yao & Zhanqi Wang & Hongwei Zhang, 2016. "Dynamic Changes of the Ecological Footprint and Its Component Analysis Response to Land Use in Wuhan, China," Sustainability, MDPI, vol. 8(4), pages 1-14, April.
    8. Fernández-Herrero, Laura & Duro, Juan Antonio, 2019. "What causes inequality in Material Productivity between countries?," Ecological Economics, Elsevier, vol. 162(C), pages 1-16.
    9. Hui Zhang & Haiqian Ke, 2022. "Understanding the Heterogeneous Impact of Innovation Efficiency on Urban Ecological Footprint in China," IJERPH, MDPI, vol. 19(10), pages 1-16, May.
    10. An Cheng & Xinru Han & Guogang Jiang, 2023. "Decomposition and Scenario Analysis of Factors Influencing Carbon Emissions: A Case Study of Jiangsu Province, China," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    11. Kilbourne, William E. & Thyroff, Anastasia, 2020. "STIRPAT for marketing: An introduction, expansion, and suggestions for future use," Journal of Business Research, Elsevier, vol. 108(C), pages 351-361.
    12. Shuyu Wang & Xinmin Bian, 2008. "Improved method of ecological footprint – Funing County ecological economic system assessments," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 10(3), pages 337-347, June.
    13. Juan Antonio Duro & Jordi Teixidó-Figueras & Emilio Padilla, 2017. "The Causal Factors of International Inequality in $$\hbox {CO}_{2}$$ CO 2 Emissions Per Capita: A Regression-Based Inequality Decomposition Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 683-700, August.
    14. Yang, Honghua & Ma, Linwei & Li, Zheng, 2023. "Tracing China's steel use from steel flows in the production system to steel footprints in the consumption system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    15. Xi Liu & Yugang He & Renhong Wu, 2024. "Revolutionizing Environmental Sustainability: The Role of Renewable Energy Consumption and Environmental Technologies in OECD Countries," Energies, MDPI, vol. 17(2), pages 1-21, January.
    16. Gregory Casey & Oded Galor, 2016. "Is economic growth compatible with reductions in carbon emissions? Investigating the impacts of diminished population growth," Working Papers 2016-8, Brown University, Department of Economics.
    17. Lu Wang & Bonoua Faye & Quanfeng Li & Yunkai Li, 2023. "A Spatio-Temporal Analysis of the Ecological Compensation for Cultivated Land in Northeast China," Land, MDPI, vol. 12(12), pages 1-20, December.
    18. Ahmed, Khalid, 2015. "The sheer scale of China’s urban renewal and CO2 emissions: Multiple structural breaks, long-run relationship and short-run dynamics," MPRA Paper 71035, University Library of Munich, Germany.
    19. Teixidó Figueras, Jordi & Duro Moreno, Juan Antonio, 2012. "Ecological Footprint Inequality: A methodological review and some results," Working Papers 2072/203168, Universitat Rovira i Virgili, Department of Economics.
    20. Mina Baliamoune-Lutz, 2017. "Trade and Environmental Quality in African Countries: Do Institutions Matter?," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 43(1), pages 155-172, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:23:p:4805-:d:292435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.