IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i11p1930-d236029.html
   My bibliography  Save this article

Effects of Integrated Rice-Frog Farming on Paddy Field Greenhouse Gas Emissions

Author

Listed:
  • Kaikai Fang

    (School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China)

  • Xiaomei Yi

    (School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China)

  • Wei Dai

    (School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China)

  • Hui Gao

    (School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China)

  • Linkui Cao

    (School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China)

Abstract

Integrated rice-frog farming (IRFF), as a mode of ecological farming, is fundamental in realizing sustainable development in agriculture. Yet its production of greenhouse gas (GHG) emissions remains unclear. Here, a randomized plot field experiment was performed to study the GHG emissions for various farming systems during the rice growing season. The farming systems included: conventional farming (CF), green integrated rice-frog farming (GIRF), and organic integrated rice-frog farming (OIRF). Results indicate that the cumulative methane (CH 4 ) emissions from the whole growth period were divergent for the three farming systems, with OIRF having the highest value and CF having the lowest. For nitrous oxide (N 2 O) emissions, the order is reversed. IRFF significantly increased the dissolved oxygen (DO), soil redox potential (Eh), total organic carbon (TOC) content, and soil C:N ratio, which is closely related to GHG emissions in rice fields. Additionally, the average emissions of carbon dioxide (CO 2 ) from soils during rice growing seasons ranged from 2312.27 to 2589.62 kg ha −1 and showed no significant difference in the three treatments. Rice yield in the GIRF and OIRF were lower (2.0% and 16.7%) than the control. The CH 4 emissions contributed to 83.0–96.8% of global warming potential (GWP). Compared to CF, the treatment of GIRF and OIRF increased the GWP by 41.3% and 98.2% during the whole growing period of rice, respectively. IRFF significantly increased greenhouse gas intensity (GHGI, 0.79 kg CO 2 -eq ha −1 grain yield), by 91.1% over the control. Compared to the OIRF, GIRF decreased the GHGI by approximately 39.4% (0.59 kg CO 2 -eq ha −1 grain yield), which was 44.2% higher than that of the control. The results of structural equation model showed that the contribution of fertilization to CH 4 emissions in paddy fields was much greater than that of frog activity. Moreover, frog activity could decrease GWP by reducing CH 4 emissions from rice fields. And while GIRF showed a slight increase in GHG emissions, it could still be considered as a good strategy for providing an environmentally-friendly option in maintaining crop yield in paddy fields.

Suggested Citation

  • Kaikai Fang & Xiaomei Yi & Wei Dai & Hui Gao & Linkui Cao, 2019. "Effects of Integrated Rice-Frog Farming on Paddy Field Greenhouse Gas Emissions," IJERPH, MDPI, vol. 16(11), pages 1-17, May.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:11:p:1930-:d:236029
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/11/1930/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/11/1930/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kimberly M. Carlson & James S. Gerber & Nathaniel D. Mueller & Mario Herrero & Graham K. MacDonald & Kate A. Brauman & Petr Havlik & Christine S. O’Connell & Justin A. Johnson & Sassan Saatchi & Paul , 2017. "Greenhouse gas emissions intensity of global croplands," Nature Climate Change, Nature, vol. 7(1), pages 63-68, January.
    2. Avery S. Cohn & Leah K. VanWey & Stephanie A. Spera & John F. Mustard, 2016. "Cropping frequency and area response to climate variability can exceed yield response," Nature Climate Change, Nature, vol. 6(6), pages 601-604, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peiyi Zhang & Teng Wen & Yangmei Hu & Jinbo Zhang & Zucong Cai, 2021. "Can N Fertilizer Addition Affect N 2 O Isotopocule Signatures for Soil N 2 O Source Partitioning?," IJERPH, MDPI, vol. 18(9), pages 1-10, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    2. Singh, Kuntal & McClean, Colin J. & Büker, Patrick & Hartley, Sue E. & Hill, Jane K., 2017. "Mapping regional risks from climate change for rainfed rice cultivation in India," Agricultural Systems, Elsevier, vol. 156(C), pages 76-84.
    3. Nie, Tangzhe & Huang, Jianyi & Zhang, Zhongxue & Chen, Peng & Li, Tiecheng & Dai, Changlei, 2023. "The inhibitory effect of a water-saving irrigation regime on CH4 emission in Mollisols under straw incorporation for 5 consecutive years," Agricultural Water Management, Elsevier, vol. 278(C).
    4. Hildegart Ahumada & Magdalena Cornejo, 2019. "How econometrics can help us understand the effects of climate change on crop yields: the case of soybeans," School of Government Working Papers wp_gob_2019_2, Universidad Torcuato Di Tella.
    5. Chaisri Tarasawatpipat & Witthaya Mekhum, 2021. "Rethinking the Reasons of Greenhouse Gases Emission in ASEAN Countries: Finding Reasons in Urbanization, Industrialization and Population Growth," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 544-550.
    6. Minghui Zhang & Gabriel Abrahao & Sally Thompson, 2021. "Sensitivity of soybean planting date to wet season onset in Mato Grosso, Brazil, and implications under climate change," Climatic Change, Springer, vol. 168(3), pages 1-28, October.
    7. Shen, Ge & Yu, Qiangyi & Zhou, Qingbo & Wang, Cong & Wu, Wenbin, 2023. "From multiple cropping frequency to multiple cropping system: A new perspective for the characterization of cropland use intensity," Agricultural Systems, Elsevier, vol. 204(C).
    8. Christopher N. Boyer & Eunchun Park & Seong D. Yun, 2023. "Corn and soybean prevented planting acres response to weather," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 45(2), pages 970-983, June.
    9. Rogovska, Natalia & O’Brien, Peter L. & Malone, Rob & Emmett, Bryan & Kovar, John L. & Jaynes, Dan & Kaspar, Thomas & Moorman, Thomas B. & Kyveryga, Peter, 2023. "Long-term conservation practices reduce nitrate leaching while maintaining yields in tile-drained Midwestern soils," Agricultural Water Management, Elsevier, vol. 288(C).
    10. Robert Beyer & Tim Rademacher, 2021. "Species Richness and Carbon Footprints of Vegetable Oils: Can High Yields Outweigh Palm Oil’s Environmental Impact?," Sustainability, MDPI, vol. 13(4), pages 1-10, February.
    11. Ajay Philip & Rahul R. Marathe, 2022. "A New Green Labeling Scheme for Agri-Food Supply Chains: Equilibrium and Information Sharing under Uncertainties," Sustainability, MDPI, vol. 14(23), pages 1-34, November.
    12. Li, Rongrong & Han, Xinyu & Wang, Qiang, 2023. "Do technical differences lead to a widening gap in China's regional carbon emissions efficiency? Evidence from a combination of LMDI and PDA approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    13. Cui, Xiaomeng, 2020. "Climate change and adaptation in agriculture: Evidence from US cropping patterns," Journal of Environmental Economics and Management, Elsevier, vol. 101(C).
    14. Chuanhe Xiong & Shuang Chen & Liting Xu, 2020. "Driving factors analysis of agricultural carbon emissions based on extended STIRPAT model of Jiangsu Province, China," Growth and Change, Wiley Blackwell, vol. 51(3), pages 1401-1416, September.
    15. Liu, Jianliang & Huang, Xinya & Jiang, Haibo & Chen, Huai, 2021. "Sustaining yield and mitigating methane emissions from rice production with plastic film mulching technique," Agricultural Water Management, Elsevier, vol. 245(C).
    16. Gupte, Ameya Pankaj & Basaglia, Marina & Casella, Sergio & Favaro, Lorenzo, 2022. "Rice waste streams as a promising source of biofuels: feedstocks, biotechnologies and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    17. Wenjian He & Yiyang Liu & Huaping Sun & Farhad Taghizadeh-Hesary, 2020. "How Does Climate Change Affect Rice Yield in China?," Agriculture, MDPI, vol. 10(10), pages 1-16, September.
    18. Fan, Xing & Zhang, Wen & Chen, Weiwei & Chen, Bin, 2020. "Land–water–energy nexus in agricultural management for greenhouse gas mitigation," Applied Energy, Elsevier, vol. 265(C).
    19. José Amador Honorato-Salazar & Jorge Aburto & Myriam Adela Amezcua-Allieri, 2021. "Agave and Opuntia Species as Sustainable Feedstocks for Bioenergy and Byproducts," Sustainability, MDPI, vol. 13(21), pages 1-18, November.
    20. Andreas Meyer-Aurich & Yusuf Nadi Karatay, 2022. "Greenhouse Gas Mitigation Costs of Reduced Nitrogen Fertilizer," Agriculture, MDPI, vol. 12(9), pages 1-13, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:11:p:1930-:d:236029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.