IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v14y2016i1p20-d86284.html
   My bibliography  Save this article

Hotspot Identification for Shanghai Expressways Using the Quantitative Risk Assessment Method

Author

Listed:
  • Can Chen

    (Department of Traffic Engineering and Key Laboratory of Road & Traffic Engineering of the Ministry of Education, Tongji University, 4800 Cao’an Road, Shanghai 201804, China)

  • Tienan Li

    (Department of Traffic Engineering and Key Laboratory of Road & Traffic Engineering of the Ministry of Education, Tongji University, 4800 Cao’an Road, Shanghai 201804, China)

  • Jian Sun

    (Department of Traffic Engineering and Key Laboratory of Road & Traffic Engineering of the Ministry of Education, Tongji University, 4800 Cao’an Road, Shanghai 201804, China
    Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, SiPaiLou #2, Nanjing 210096, China)

  • Feng Chen

    (Department of Traffic Engineering and Key Laboratory of Road & Traffic Engineering of the Ministry of Education, Tongji University, 4800 Cao’an Road, Shanghai 201804, China)

Abstract

Hotspot identification (HSID) is the first and key step of the expressway safety management process. This study presents a new HSID method using the quantitative risk assessment (QRA) technique. Crashes that are likely to happen for a specific site are treated as the risk. The aggregation of the crash occurrence probability for all exposure vehicles is estimated based on the empirical Bayesian method. As for the consequences of crashes, crashes may not only cause direct losses (e.g., occupant injuries and property damages) but also result in indirect losses. The indirect losses are expressed by the extra delays calculated using the deterministic queuing diagram method. The direct losses and indirect losses are uniformly monetized to be considered as the consequences of this risk. The potential costs of crashes, as a criterion to rank high-risk sites, can be explicitly expressed as the sum of the crash probability for all passing vehicles and the corresponding consequences of crashes. A case study on the urban expressways of Shanghai is presented. The results show that the new QRA method for HSID enables the identification of a set of high-risk sites that truly reveal the potential crash costs to society.

Suggested Citation

  • Can Chen & Tienan Li & Jian Sun & Feng Chen, 2016. "Hotspot Identification for Shanghai Expressways Using the Quantitative Risk Assessment Method," IJERPH, MDPI, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:gam:jijerp:v:14:y:2016:i:1:p:20-:d:86284
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/14/1/20/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/14/1/20/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee Fawcett & Neil Thorpe, 2013. "Mobile safety cameras: estimating casualty reductions and the demand for secondary healthcare," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(11), pages 2385-2406, November.
    2. Tu, Huizhao & Li, Hao & van Lint, Hans & van Zuylen, Henk, 2012. "Modeling travel time reliability of freeways using risk assessment techniques," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1528-1540.
    3. Tamasi, Galileo & Demichela, Micaela, 2011. "Risk assessment techniques for civil aviation security," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 892-899.
    4. Qiang Meng & Xiaobo Qu & Kum Thong Yong & Yoke Heng Wong, 2011. "QRA Model‐Based Risk Impact Analysis of Traffic Flow in Urban Road Tunnels," Risk Analysis, John Wiley & Sons, vol. 31(12), pages 1872-1882, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ewa DUDEK & Karolina KRZYKOWSKA-PIOTROWSKA & Mirosław SIERGIEJCZYK, 2020. "Risk Management In (Air) Transport With Exemplary Risk Analysis Based On The Tolerability Matrix," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 15(2), pages 143-156, June.
    2. Tu, Huizhao & Li, Hao & van Lint, Hans & van Zuylen, Henk, 2012. "Modeling travel time reliability of freeways using risk assessment techniques," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1528-1540.
    3. Krier, Betty & Liu, Chia-Mei & McNamara, Brian & Sharpe, Jerrod, 2014. "Individual freight effects, capacity utilization, and Amtrak service quality," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 163-175.
    4. Li, Hao & Gao, Kun & Tu, Huizhao, 2017. "Variations in mode-specific valuations of travel time reliability and in-vehicle crowding: Implications for demand estimation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 250-263.
    5. Kathrin Goldmann & Gernot Sieg, 2020. "Quantifying the phantom jam externality: The case of an Autobahn section in Germany," Working Papers 30, Institute of Transport Economics, University of Muenster.
    6. S. Towers & B. Amdouni & R. Cordova & K. Funderburk & C. Montalvo & M. Thakur & J. Velazquez-Molina & C. Castillo-Chavez, 2021. "The rising prevalence of weapons in unsafe arming configurations discovered in American airports," Journal of Transportation Security, Springer, vol. 14(1), pages 1-18, June.
    7. Hong Sun & Fangquan Yang & Peiwen Zhang & Yunxiang Zhao, 2023. "Flight Training Risk Identification and Assessment Based on the HHM-RFRM Model," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    8. Skorupski, Jacek, 2015. "The risk of an air accident as a result of a serious incident of the hybrid type," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 37-52.
    9. Sjoerd van der Spoel & Chintan Amrit & Jos van Hillegersberg, 2017. "Predictive analytics for truck arrival time estimation: a field study at a European distribution centre," International Journal of Production Research, Taylor & Francis Journals, vol. 55(17), pages 5062-5078, September.
    10. Hunt, Kyle & Agarwal, Puneet & Zhuang, Jun, 2022. "On the adoption of new technology to enhance counterterrorism measures: An attacker–defender game with risk preferences," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    11. Li, Hao & Yu, Lu & Chen, Yu & Tu, Huizhao & Zhang, Jun, 2023. "Uncertainty of available range in explaining the charging choice behavior of BEV users," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    12. Jia-ni Zhao & Li-na Shi & Li Zhang, 2017. "Application of improved unascertained mathematical model in security evaluation of civil airport," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(3), pages 1989-2000, November.
    13. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
    14. Muriel-Villegas, Juan E. & Alvarez-Uribe, Karla C. & Patiño-Rodríguez, Carmen E. & Villegas, Juan G., 2016. "Analysis of transportation networks subject to natural hazards – Insights from a Colombian case," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 151-165.
    15. Changyin Dong & Hao Wang & Quan Chen & Daiheng Ni & Ye Li, 2019. "Simulation-Based Assessment of Multilane Separate Freeways at Toll Station Area: A Case Study from Huludao Toll Station on Shenshan Freeway," Sustainability, MDPI, vol. 11(11), pages 1-22, May.
    16. Hunt, Kyle & Agarwal, Puneet & Zhuang, Jun, 2021. "Technology adoption for airport security: Modeling public disclosure and secrecy in an attacker-defender game," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    17. Skorupski, Jacek & Uchroński, Piotr, 2020. "Multi-criteria group decision-making approach to the modernization of hold baggage security screening system at an airport," Journal of Air Transport Management, Elsevier, vol. 87(C).
    18. Gore, Ninad & Arkatkar, Shriniwas & Joshi, Gaurang & Pulugurtha, Srinivas S., 2023. "A hazard-based model to derive travel time under congested conditions," Transport Policy, Elsevier, vol. 138(C), pages 1-16.
    19. Gore, Ninad & Arkatkar, Shriniwas & Joshi, Gaurang & Antoniou, Constantinos, 2023. "Developing modified congestion index and congestion-based level of service," Transport Policy, Elsevier, vol. 131(C), pages 97-119.
    20. Li, Hao & Tu, Huizhao & Hensher, David A., 2016. "Integrating the mean–variance and scheduling approaches to allow for schedule delay and trip time variability under uncertainty," Transportation Research Part A: Policy and Practice, Elsevier, vol. 89(C), pages 151-163.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:14:y:2016:i:1:p:20-:d:86284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.