IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v138y2023icp1-16.html
   My bibliography  Save this article

A hazard-based model to derive travel time under congested conditions

Author

Listed:
  • Gore, Ninad
  • Arkatkar, Shriniwas
  • Joshi, Gaurang
  • Pulugurtha, Srinivas S.

Abstract

Increasing congestion levels and their elusive impact warrants the development of congestion mitigation strategies. Quantifying congestion and analyzing the spatiotemporal variations is imperative to achieve this target. Travel time is being explored as a measure of congestion with the advent of Intelligent Transportation Systems (ITS) and the deployment of related technologies. Researchers identified congested conditions when the average travel time exceeds 1.33 or 1.66 times free-flow travel time (FFTT). It is well known that travel time under congested conditions (Tc) is more sensitive to land use, road geometry, and traffic control characteristics than the FFTT. Therefore, the extension of FFTT to derive Tc may not be appropriate. This study focuses on developing a hazard-based model to derive Tc. Travel time is modeled using a parametric accelerated failure time (AFT) model. The applicability of the proposed methodology is justified using empirical and simulated datasets. The Tc derived from the AFT model is close to the travel time for the level of service (LOS F). Based on the Tc, a new measure of congestion, termed congestion index (CI), is proposed. The proposed index can quantify the frequency and intensity of congestion on a link or network. The traffic states identified based on CI were mapped on the fundamental diagram (FD) and the macroscopic fundamental diagram (MFD). It was concluded that if travel times are uncertain and unstable under low-density conditions, then the ascending leg of the FD or MFD can be marked congested. Uncertain and unstable travel times indicate that traffic flow is unstable, and therefore, it can be concluded that traffic instabilities significantly affect congestion.

Suggested Citation

  • Gore, Ninad & Arkatkar, Shriniwas & Joshi, Gaurang & Pulugurtha, Srinivas S., 2023. "A hazard-based model to derive travel time under congested conditions," Transport Policy, Elsevier, vol. 138(C), pages 1-16.
  • Handle: RePEc:eee:trapol:v:138:y:2023:i:c:p:1-16
    DOI: 10.1016/j.tranpol.2023.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X23001269
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2023.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gore, Ninad & Arkatkar, Shriniwas & Joshi, Gaurang & Antoniou, Constantinos, 2023. "Developing modified congestion index and congestion-based level of service," Transport Policy, Elsevier, vol. 131(C), pages 97-119.
    2. Tu, Huizhao & Li, Hao & van Lint, Hans & van Zuylen, Henk, 2012. "Modeling travel time reliability of freeways using risk assessment techniques," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1528-1540.
    3. Geroliminis, Nikolas & Daganzo, Carlos F., 2008. "Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 759-770, November.
    4. Dave, Sanjaykumar M. & Joshi, Gaurang J. & Ravinder, Kayitha & Gore, Ninad, 2019. "Data monitoring for the assessment of on-street parking demand in CBD areas of developing countries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 152-171.
    5. Qu, Xiaobo & Zhang, Jin & Wang, Shuaian, 2017. "On the stochastic fundamental diagram for freeway traffic: Model development, analytical properties, validation, and extensive applications," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 256-271.
    6. Guzman, Luis A. & Arellana, Julian & Alvarez, Vilma, 2020. "Confronting congestion in urban areas: Developing Sustainable Mobility Plans for public and private organizations in Bogotá," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 321-335.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gore, Ninad & Arkatkar, Shriniwas & Joshi, Gaurang & Antoniou, Constantinos, 2023. "Developing modified congestion index and congestion-based level of service," Transport Policy, Elsevier, vol. 131(C), pages 97-119.
    2. Yin, Ruyang & Zheng, Nan & Liu, Zhiyuan, 2022. "Estimating fundamental diagram for multi-modal signalized urban links with limited probe data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    3. Arnott, Richard & Inci, Eren, 2010. "The stability of downtown parking and traffic congestion," Journal of Urban Economics, Elsevier, vol. 68(3), pages 260-276, November.
    4. Xu, Guanhao & Gayah, Vikash V., 2023. "Non-unimodal and non-concave relationships in the network Macroscopic Fundamental Diagram caused by hierarchical streets," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 203-227.
    5. Bai, Lu & Wong, S.C. & Xu, Pengpeng & Chow, Andy H.F. & Lam, William H.K., 2021. "Calibration of stochastic link-based fundamental diagram with explicit consideration of speed heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 524-539.
    6. Russo, Antonio & Adler, Martin W. & Liberini, Federica & van Ommeren, Jos N., 2021. "Welfare losses of road congestion: Evidence from Rome," Regional Science and Urban Economics, Elsevier, vol. 89(C).
    7. Xu, Zhengtian & Yin, Yafeng & Zha, Liteng, 2017. "Optimal parking provision for ride-sourcing services," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 559-578.
    8. Seo, Toru & Kawasaki, Yutaka & Kusakabe, Takahiko & Asakura, Yasuo, 2019. "Fundamental diagram estimation by using trajectories of probe vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 40-56.
    9. Ramezani, Mohsen & Geroliminis, Nikolas, 2012. "On the estimation of arterial route travel time distribution with Markov chains," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1576-1590.
    10. Haddad, Jack & Zheng, Zhengfei, 2020. "Adaptive perimeter control for multi-region accumulation-based models with state delays," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 133-153.
    11. Zhang, Lele & Garoni, Timothy M & de Gier, Jan, 2013. "A comparative study of Macroscopic Fundamental Diagrams of arterial road networks governed by adaptive traffic signal systems," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 1-23.
    12. Vignon, Daniel & Yin, Yafeng & Ke, Jintao, 2023. "Regulating the ride-hailing market in the age of uberization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    13. Zhang, Wei & (Ato) Xu, Wangtu, 2017. "Simulation-based robust optimization for the schedule of single-direction bus transit route: The design of experiment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 203-230.
    14. Krier, Betty & Liu, Chia-Mei & McNamara, Brian & Sharpe, Jerrod, 2014. "Individual freight effects, capacity utilization, and Amtrak service quality," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 163-175.
    15. Kenneth Small, 2015. "The Bottleneck Model: An Assessment and Interpretation," Working Papers 141506, University of California-Irvine, Department of Economics.
    16. Bedoya-Maya, Felipe & Calatayud, Agustina & González Mejia, Vileydy, 2022. "Estimating the effect of urban road congestion on air quality in Latin America," IDB Publications (Working Papers) 12468, Inter-American Development Bank.
    17. Li, Hao & Gao, Kun & Tu, Huizhao, 2017. "Variations in mode-specific valuations of travel time reliability and in-vehicle crowding: Implications for demand estimation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 250-263.
    18. Yang, Lei & Yin, Suwan & Han, Ke & Haddad, Jack & Hu, Minghua, 2017. "Fundamental diagrams of airport surface traffic: Models and applications," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 29-51.
    19. Dantsuji, Takao & Takayama, Yuki & Fukuda, Daisuke, 2023. "Perimeter control in a mixed bimodal bathtub model," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 267-291.
    20. Daganzo, Carlos F & Lehe, Lewis, 2016. "Zone Pricing in Theory and Practice," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt39f0v6kq, Institute of Transportation Studies, UC Berkeley.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:138:y:2023:i:c:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.