IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v7y2025i2p16-d1627857.html
   My bibliography  Save this article

Volatility Modelling of the Johannesburg Stock Exchange All Share Index Using the Family GARCH Model

Author

Listed:
  • Israel Maingo

    (Department of Mathematical and Computational Sciences, University of Venda, Private Bag X5050, Thohoyandou 0950, Limpopo, South Africa
    These authors contributed equally to this work.)

  • Thakhani Ravele

    (Department of Mathematical and Computational Sciences, University of Venda, Private Bag X5050, Thohoyandou 0950, Limpopo, South Africa
    These authors contributed equally to this work.)

  • Caston Sigauke

    (Department of Mathematical and Computational Sciences, University of Venda, Private Bag X5050, Thohoyandou 0950, Limpopo, South Africa
    These authors contributed equally to this work.)

Abstract

In numerous domains of finance and economics, modelling and predicting stock market volatility is essential. Predicting stock market volatility is widely used in the management of portfolios, analysis of risk, and determination of option prices. This study is about volatility modelling of the daily Johannesburg Stock Exchange All Share Index (JSE ALSI) stock price data between 1 January 2014 and 29 December 2023. The modelling process incorporated daily log returns derived from the JSE ALSI. The following volatility models were presented for the period: sGARCH(1, 1) and fGARCH(1, 1). The models for volatility were fitted using five unique error distribution assumptions, including Student’s t , its skewed version, the generalized error and skewed generalized error distributions, and the generalized hyperbolic distribution. Based on information criteria such as Akaike, Bayesian, and Hannan–Quinn, the ARMA(0, 0)-fGARCH(1, 1) model with a skewed generalized error distribution emerged as the best fit. The chosen model revealed that the JSE ALSI prices are highly persistent with the leverage effect. JSE ALSI price volatility was notably influenced during the COVID-19 pandemic. The forecast over the next 10 days shows a rise in volatility. A comparative study was then carried out with the JSE Top 40 and the S&P500 indices. Comparison of the FTSE/JSE Top 40, S&P 500, and JSE ALLSI return indices over the COVID-19 pandemic indicated higher initial volatility in the FTSE/JSE Top 40 and S&P 500, with the JSE ALLSI following a similar trend later. The S&P 500 showed long-term reliability and high rolling returns in spite of short-run volatility, the FTSE/JSE Top 40 showed more pre-pandemic risk and volatility but reduced levels of rolling volatility after the pandemic, similar in magnitude for each index with low correlations among them. These results provide important insights for risk managers and investors navigating the South African equity market.

Suggested Citation

  • Israel Maingo & Thakhani Ravele & Caston Sigauke, 2025. "Volatility Modelling of the Johannesburg Stock Exchange All Share Index Using the Family GARCH Model," Forecasting, MDPI, vol. 7(2), pages 1-33, April.
  • Handle: RePEc:gam:jforec:v:7:y:2025:i:2:p:16-:d:1627857
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/7/2/16/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/7/2/16/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brooks,Chris, 2008. "RATS Handbook to Accompany Introductory Econometrics for Finance," Cambridge Books, Cambridge University Press, number 9780521896955, Enero.
    2. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    3. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Brailsford, Timothy J. & Faff, Robert W., 1996. "An evaluation of volatility forecasting techniques," Journal of Banking & Finance, Elsevier, vol. 20(3), pages 419-438, April.
    6. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    7. Carl H. Korkpoe & Peterson Owusu Junior, 2018. "Behaviour of Johannesburg Stock Exchange All Share Index Returns - An Asymmetric GARCH and News Impact Effects Approach," SPOUDAI Journal of Economics and Business, SPOUDAI Journal of Economics and Business, University of Piraeus, vol. 68(1), pages 26-42, January-M.
    8. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    9. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shekar Bose & Hafizur Rahman, 2022. "Are News Effects Necessarily Asymmetric? Evidence from Bangladesh Stock Market," SAGE Open, , vol. 12(4), pages 21582440221, October.
    2. Kanungo, Rama Prasad, 2021. "Uncertainty of M&As under asymmetric estimation," Journal of Business Research, Elsevier, vol. 122(C), pages 774-793.
    3. Steeley, James M., 2006. "Volatility transmission between stock and bond markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 16(1), pages 71-86, February.
    4. Bali, Turan G. & Weinbaum, David, 2007. "A conditional extreme value volatility estimator based on high-frequency returns," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 361-397, February.
    5. Wu, Guojun & Xiao, Zhijie, 2002. "A generalized partially linear model of asymmetric volatility," Journal of Empirical Finance, Elsevier, vol. 9(3), pages 287-319, August.
    6. Kui-Wai Li, 2012. "A study on the volatility forecast of the US housing market in the 2008 crisis," Applied Financial Economics, Taylor & Francis Journals, vol. 22(22), pages 1869-1880, November.
    7. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, Enero.
    8. Sei‐Wan Kim & Bong‐Soo Lee, 2008. "Stock Returns, Asymmetric Volatility, Risk Aversion, And Business Cycle: Some New Evidence," Economic Inquiry, Western Economic Association International, vol. 46(2), pages 131-148, April.
    9. El Jebari, Ouael & Hakmaoui, Abdelati, 2018. "GARCH Family Models vs EWMA: Which is the Best Model to Forecast Volatility of the Moroccan Stock Exchange Market? || Modelos de la familia GARCH vs EWMA: ¿cuál es el mejor modelo para pronosticar la ," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 237-249, Diciembre.
    10. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    11. Rakesh Kumar & Raj S. Dhankar, 2011. "Non Linearity and Heteroskedasticity Effect on Stock Returns Volatility," Global Business Review, International Management Institute, vol. 12(2), pages 319-329, June.
    12. Piotr Wdowinski & Marta Malecka, 2010. "Asymmetry in Volatility: A Comparison of Developed and Transition Stock Markets," CESifo Working Paper Series 2974, CESifo.
    13. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    14. Nelson, Daniel B., 1996. "Asymptotic filtering theory for multivariate ARCH models," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 1-47.
    15. Choi, Jaewon & Richardson, Matthew, 2016. "The volatility of a firm's assets and the leverage effect," Journal of Financial Economics, Elsevier, vol. 121(2), pages 254-277.
    16. Sanvi Avouyi-Dovi & Eric Jondeau, 1999. "Interest Rate Transmission and Volatility Transmission along the Yield Curve," Working papers 57, Banque de France.
    17. Neifar, Malika, 2020. "Stock Market Volatility Analysis: A Case Study of TUNindex," MPRA Paper 99140, University Library of Munich, Germany.
    18. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    19. Geoffrey F. Loudon & Wing H. Watt & Pradeep K. Yadav, 2000. "An empirical analysis of alternative parametric ARCH models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(2), pages 117-136.
    20. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:7:y:2025:i:2:p:16-:d:1627857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.