IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v4y2022i3p37-698d868638.html
   My bibliography  Save this article

Examining Factors That Affect Movie Gross Using Gaussian Copula Marginal Regression

Author

Listed:
  • Joshua Eklund

    (Computer Science Discipline, Division of Science and Mathematics, University of Minnesota-Morris, Morris, MN 56267, USA)

  • Jong-Min Kim

    (Statistics Discipline, Division of Science and Mathematics, University of Minnesota-Morris, Morris, MN 56267, USA)

Abstract

In this research, we investigate the relationship between a movie’s gross and its budget, year of release, season of release, genre, and rating. The movie data used in this research are severely skewed to the right, resulting in the problems of nonlinearity, non-normal distribution, and non-constant variance of the error terms. To overcome these difficulties, we employ a Gaussian copula marginal regression (GCMR) model after adjusting the gross and budget variables for inflation using a consumer price index. An analysis of the data found that year of release, budget, season of release, genre, and rating were all statistically significant predictors of movie gross. Specifically, one unit increases in budget and year were associated with an increase in movie gross. G movies were found to gross more than all other kinds of movies (PG, PG-13, R, and Other). Movies released in the fall were found to gross the least compared to the other three seasons. Finally, action movies were found to gross more than biography, comedy, crime, and other movie genres, but gross less than adventure, animation, drama, fantasy, horror, and mystery movies.

Suggested Citation

  • Joshua Eklund & Jong-Min Kim, 2022. "Examining Factors That Affect Movie Gross Using Gaussian Copula Marginal Regression," Forecasting, MDPI, vol. 4(3), pages 1-14, July.
  • Handle: RePEc:gam:jforec:v:4:y:2022:i:3:p:37-698:d:868638
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/4/3/37/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/4/3/37/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pourkhanali, Armin & Kim, Jong-Min & Tafakori, Laleh & Fard, Farzad Alavi, 2016. "Measuring systemic risk using vine-copula," Economic Modelling, Elsevier, vol. 53(C), pages 63-74.
    2. Anastasios Panagiotelis & Claudia Czado & Harry Joe, 2012. "Pair Copula Constructions for Multivariate Discrete Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1063-1072, September.
    3. Jong-Min Kim & Hojin Jung, 2018. "Relationship between oil price and exchange rate by FDA and copula," Applied Economics, Taylor & Francis Journals, vol. 50(22), pages 2486-2499, May.
    4. Kyuhan Lee & Jinsoo Park & Iljoo Kim & Youngseok Choi, 2018. "Predicting movie success with machine learning techniques: ways to improve accuracy," Information Systems Frontiers, Springer, vol. 20(3), pages 577-588, June.
    5. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    6. Brechmann, Eike Christian & Schepsmeier, Ulf, 2013. "Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 52(i03).
    7. Jang, Hyuna & Kim, Jong-Min & Noh, Hohsuk, 2022. "Vine copula Granger causality in mean," Economic Modelling, Elsevier, vol. 109(C).
    8. Smith, Michael & Min, Aleksey & Almeida, Carlos & Czado, Claudia, 2010. "Modeling Longitudinal Data Using a Pair-Copula Decomposition of Serial Dependence," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1467-1479.
    9. Kim, Jong-Min & Kim, Dong H. & Jung, Hojin, 2020. "Modeling non-normal corporate bond yield spreads by copula," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    10. Kjersti Aas & Daniel Berg, 2009. "Models for construction of multivariate dependence - a comparison study," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 639-659.
    11. Jong-Min Kim & Leixin Xia & Iksuk Kim & Seungjoo Lee & Keon-Hyung Lee, 2020. "Finding Nemo: Predicting Movie Performances by Machine Learning Methods," JRFM, MDPI, vol. 13(5), pages 1-12, May.
    12. Yan Liu & Tian Xie, 2019. "Machine learning versus econometrics: prediction of box office," Applied Economics Letters, Taylor & Francis Journals, vol. 26(2), pages 124-130, January.
    13. Kraus, Daniel & Czado, Claudia, 2017. "D-vine copula based quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 1-18.
    14. Xingyao Xiao & Yihong Cheng & Jong-Min Kim, 2021. "Movie Title Keywords: A Text Mining and Exploratory Factor Analysis of Popular Movies in the United States and China," JRFM, MDPI, vol. 14(2), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Fan & Li, Heng & Dong, Chao, 2021. "Understanding near-miss count data on construction sites using greedy D-vine copula marginal regression," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    2. Hobæk Haff, Ingrid & Aas, Kjersti & Frigessi, Arnoldo & Lacal, Virginia, 2016. "Structure learning in Bayesian Networks using regular vines," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 186-208.
    3. David E. Allen & Michael McAleer & Abhay K. Singh, 2017. "Risk Measurement and Risk Modelling Using Applications of Vine Copulas," Sustainability, MDPI, vol. 9(10), pages 1-34, September.
    4. Calabrese, Raffaella & Degl’Innocenti, Marta & Osmetti, Silvia Angela, 2017. "The effectiveness of TARP-CPP on the US banking industry: A new copula-based approach," European Journal of Operational Research, Elsevier, vol. 256(3), pages 1029-1037.
    5. Kim, Daeyoung & Kim, Jong-Min & Liao, Shu-Min & Jung, Yoon-Sung, 2013. "Mixture of D-vine copulas for modeling dependence," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 1-19.
    6. Kjersti Aas, 2016. "Pair-Copula Constructions for Financial Applications: A Review," Econometrics, MDPI, vol. 4(4), pages 1-15, October.
    7. Lu Yang & Claudia Czado, 2022. "Two‐part D‐vine copula models for longitudinal insurance claim data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1534-1561, December.
    8. David E. Allen & Mohammad A. Ashraf & Michael McAleer & Robert J. Powell & Abhay K. Singh, 2013. "Financial dependence analysis: applications of vine copulas," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(4), pages 403-435, November.
    9. Brechmann, Eike & Czado, Claudia & Paterlini, Sandra, 2014. "Flexible dependence modeling of operational risk losses and its impact on total capital requirements," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 271-285.
    10. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    11. Genest Christian & Scherer Matthias, 2019. "The world of vines: An interview with Claudia Czado," Dependence Modeling, De Gruyter, vol. 7(1), pages 169-180, January.
    12. Dalla Valle, Luciana & De Giuli, Maria Elena & Tarantola, Claudia & Manelli, Claudio, 2016. "Default probability estimation via pair copula constructions," European Journal of Operational Research, Elsevier, vol. 249(1), pages 298-311.
    13. Marta Nai Ruscone & Daniel Fernández, 2021. "Dynamics of HDI Index: Temporal Dependence Based on D-vine Copulas Model for Three-Way Data," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 158(2), pages 563-593, December.
    14. Weiping Zhang & MengMeng Zhang & Yu Chen, 2020. "A Copula-Based GLMM Model for Multivariate Longitudinal Data with Mixed-Types of Responses," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 353-379, November.
    15. Dai, Xingyu & Wang, Qunwei & Zha, Donglan & Zhou, Dequn, 2020. "Multi-scale dependence structure and risk contagion between oil, gold, and US exchange rate: A wavelet-based vine-copula approach," Energy Economics, Elsevier, vol. 88(C).
    16. Eling, Martin & Jung, Kwangmin, 2018. "Copula approaches for modeling cross-sectional dependence of data breach losses," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 167-180.
    17. Erhardt, Tobias Michael & Czado, Claudia & Schepsmeier, Ulf, 2015. "Spatial composite likelihood inference using local C-vines," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 74-88.
    18. Niemierko, Rochus & Töppel, Jannick & Tränkler, Timm, 2019. "A D-vine copula quantile regression approach for the prediction of residential heating energy consumption based on historical data," Applied Energy, Elsevier, vol. 233, pages 691-708.
    19. Kumar, Satish & Tiwari, Aviral Kumar & Chauhan, Yogesh & Ji, Qiang, 2019. "Dependence structure between the BRICS foreign exchange and stock markets using the dependence-switching copula approach," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 273-284.
    20. Jakob Stöber & Ulf Schepsmeier, 2013. "Estimating standard errors in regular vine copula models," Computational Statistics, Springer, vol. 28(6), pages 2679-2707, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:4:y:2022:i:3:p:37-698:d:868638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.