IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v2y2020i3p15-283d395634.html

A Generalized Flow for B2B Sales Predictive Modeling: An Azure Machine-Learning Approach

Author

Listed:
  • Alireza Rezazadeh

    (Electrical and Computer Engineering Department, University of Illinois at Chicago, Chicago, IL 60607, USA)

Abstract

Predicting the outcome of sales opportunities is a core part of successful business management. Conventionally, undertaking this prediction has relied mostly on subjective human evaluations in the process of sales decision-making. In this paper, we addressed the problem of forecasting the outcome of Business to Business (B2B) sales by proposing a thorough data-driven Machine-Learning (ML) workflow on a cloud-based computing platform: Microsoft Azure Machine-Learning Service (Azure ML). This workflow consists of two pipelines: (1) An ML pipeline to train probabilistic predictive models on the historical sales opportunities data. In this pipeline, data is enriched with an extensive feature enhancement step and then used to train an ensemble of ML classification models in parallel. (2) A prediction pipeline to use the trained ML model and infer the likelihood of winning new sales opportunities along with calculating optimal decision boundaries. The effectiveness of the proposed workflow was evaluated on a real sales dataset of a major global B2B consulting firm. Our results implied that decision-making based on the ML predictions is more accurate and brings a higher monetary value.

Suggested Citation

  • Alireza Rezazadeh, 2020. "A Generalized Flow for B2B Sales Predictive Modeling: An Azure Machine-Learning Approach," Forecasting, MDPI, vol. 2(3), pages 1-17, August.
  • Handle: RePEc:gam:jforec:v:2:y:2020:i:3:p:15-283:d:395634
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/2/3/15/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/2/3/15/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    2. Davis, Donna F. & Mentzer, John T., 2007. "Organizational factors in sales forecasting management," International Journal of Forecasting, Elsevier, vol. 23(3), pages 475-495.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Johannes Habel & Sascha Alavi & Nicolas Heinitz, 2023. "A theory of predictive sales analytics adoption," AMS Review, Springer;Academy of Marketing Science, vol. 13(1), pages 34-54, June.
    2. Alireza Rezazadeh & Yasamin Jafarian & Ali Kord, 2022. "Explainable Ensemble Machine Learning for Breast Cancer Diagnosis Based on Ultrasound Image Texture Features," Forecasting, MDPI, vol. 4(1), pages 1-13, February.
    3. Sonia Leva, 2021. "Editorial for Special Issue: “Feature Papers of Forecasting”," Forecasting, MDPI, vol. 3(1), pages 1-3, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pennings, Clint L.P. & van Dalen, Jan & Rook, Laurens, 2019. "Coordinating judgmental forecasting: Coping with intentional biases," Omega, Elsevier, vol. 87(C), pages 46-56.
    2. Taku Moriyama & Masashi Kuwano & Masahito Nakayama, 2024. "A statistical method for estimating piecewise linear sales trends," Journal of Marketing Analytics, Palgrave Macmillan, vol. 12(2), pages 436-444, June.
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. Döpke, Jörg & Fritsche, Ulrich & Müller, Karsten, 2019. "Has macroeconomic forecasting changed after the Great Recession? Panel-based evidence on forecast accuracy and forecaster behavior from Germany," Journal of Macroeconomics, Elsevier, vol. 62(C).
    5. Marcus Buckmann & Andy Haldane & Anne-Caroline Hüser, 2021. "Comparing minds and machines: implications for financial stability," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 37(3), pages 479-508.
    6. Graefe, Andreas & Küchenhoff, Helmut & Stierle, Veronika & Riedl, Bernhard, 2015. "Limitations of Ensemble Bayesian Model Averaging for forecasting social science problems," International Journal of Forecasting, Elsevier, vol. 31(3), pages 943-951.
    7. Ossi Ylijoki, 2018. "Guidelines for assessing the value of a predictive algorithm: a case study," Journal of Marketing Analytics, Palgrave Macmillan, vol. 6(1), pages 19-26, March.
    8. Lackes, Richard & Siepermann, Markus & Vetter, Georg, 2020. "What drives decision makers to follow or ignore forecasting tools - A game based analysis," Journal of Business Research, Elsevier, vol. 106(C), pages 315-322.
    9. Wright, Malcolm J. & Stern, Philip, 2015. "Forecasting new product trial with analogous series," Journal of Business Research, Elsevier, vol. 68(8), pages 1732-1738.
    10. Green, Kesten C. & Armstrong, J. Scott & Graefe, Andreas, 2015. "Golden rule of forecasting rearticulated: Forecast unto others as you would have them forecast unto you," Journal of Business Research, Elsevier, vol. 68(8), pages 1768-1771.
    11. Fildes, Robert & Petropoulos, Fotios, 2015. "Simple versus complex selection rules for forecasting many time series," Journal of Business Research, Elsevier, vol. 68(8), pages 1692-1701.
    12. Smith, Carlo D. & Mentzer, John T., 2010. "Forecasting task-technology fit: The influence of individuals, systems and procedures on forecast performance," International Journal of Forecasting, Elsevier, vol. 26(1), pages 144-161, January.
    13. Konstantinos Nikolopoulos & Waleed S. Alghassab & Konstantia Litsiou & Stelios Sapountzis, 2019. "Long-Term Economic Forecasting with Structured Analogies and Interaction Groups," Working Papers 19018, Bangor Business School, Prifysgol Bangor University (Cymru / Wales).
    14. Gang Cheng & Sicong Wang & Yuhong Yang, 2015. "Forecast Combination under Heavy-Tailed Errors," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    15. Gardner, Everette S., 2015. "Conservative forecasting with the damped trend," Journal of Business Research, Elsevier, vol. 68(8), pages 1739-1741.
    16. Spiliotis, Evangelos & Assimakopoulos, Vassilios & Makridakis, Spyros, 2020. "Generalizing the Theta method for automatic forecasting," European Journal of Operational Research, Elsevier, vol. 284(2), pages 550-558.
    17. Green, Kesten C. & Armstrong, J. Scott, 2015. "Simple versus complex forecasting: The evidence," Journal of Business Research, Elsevier, vol. 68(8), pages 1678-1685.
    18. Salim Lahmiri, 2020. "A predictive system integrating intrinsic mode functions, artificial neural networks, and genetic algorithms for forecasting S&P500 intra‐day data," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 27(2), pages 55-65, April.
    19. Soyer, Emre & Hogarth, Robin M., 2015. "The golden rule of forecasting: Objections, refinements, and enhancements," Journal of Business Research, Elsevier, vol. 68(8), pages 1702-1704.
    20. Andreas Graefe, 2018. "Predicting elections: Experts, polls, and fundamentals," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 13(4), pages 334-344, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:2:y:2020:i:3:p:15-283:d:395634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.