IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i7p522-d73536.html
   My bibliography  Save this article

Cost-Benefit Analysis for Energy Management in Public Buildings: Four Italian Case Studies

Author

Listed:
  • Davide Astiaso Garcia

    (DIAEE—Department of Astronautic, Electric and Energetic Engineering, Sapienza University, Corso Vittorio Emanuele II 244, 00186 Rome, Italy
    These authors contributed equally to this work.)

  • Fabrizio Cumo

    (CITERA—Interdisciplinary Centre for Housing, Heritage and Environment, Sapienza University, Via Gramsci 53, 00197 Rome, Italy
    These authors contributed equally to this work.)

  • Mariagrazia Tiberi

    (DIAEE—Department of Astronautic, Electric and Energetic Engineering, Sapienza University, Corso Vittorio Emanuele II 244, 00186 Rome, Italy
    These authors contributed equally to this work.)

  • Valentina Sforzini

    (DIAEE—Department of Astronautic, Electric and Energetic Engineering, Sapienza University, Corso Vittorio Emanuele II 244, 00186 Rome, Italy
    These authors contributed equally to this work.)

  • Giuseppe Piras

    (DIAEE—Department of Astronautic, Electric and Energetic Engineering, Sapienza University, Corso Vittorio Emanuele II 244, 00186 Rome, Italy
    These authors contributed equally to this work.)

Abstract

Improving energy efficiency in public buildings is one of the main challenges for a sustainable requalification of energy issues and a consequent reduction of greenhouse gas (GHG) emissions. This paper aims to provide preliminary information about economic costs and energy consumption reductions (benefits) of some considered interventions in existing public buildings. Methods include an analysis of some feasible interventions in four selected public buildings. Energy efficiency improvements have been assessed for each feasible intervention. The difference of the building global energy performance index ( EP gl ) has been assessed before and after each intervention. Economic costs of each intervention have been estimated by averaging the amount demanded by different companies for the same intervention. Results obtained show economic costs and the EP gl percentage improvement for each intervention, highlighting and allowing for the comparison of energy consumption reduction and relative economic costs. The research results come from data gathered from four public buildings, and as such they could not be used to generically identify cost-beneficial energy efficiency interventions for every context or building type. However, the data reveals useful cost based considerations for selecting energy efficiency interventions in other public buildings.

Suggested Citation

  • Davide Astiaso Garcia & Fabrizio Cumo & Mariagrazia Tiberi & Valentina Sforzini & Giuseppe Piras, 2016. "Cost-Benefit Analysis for Energy Management in Public Buildings: Four Italian Case Studies," Energies, MDPI, vol. 9(7), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:7:p:522-:d:73536
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/7/522/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/7/522/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Salvalai, Graziano & Masera, Gabriele & Sesana, Marta Maria, 2015. "Italian local codes for energy efficiency of buildings: Theoretical definition and experimental application to a residential case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1245-1259.
    2. Viholainen, Juha & Luoranen, Mika & Väisänen, Sanni & Niskanen, Antti & Horttanainen, Mika & Soukka, Risto, 2016. "Regional level approach for increasing energy efficiency," Applied Energy, Elsevier, vol. 163(C), pages 295-303.
    3. de Santoli, Livio & Mancini, Francesco & Nastasi, Benedetto & Piergrossi, Valentina, 2015. "Building integrated bioenergy production (BIBP): Economic sustainability analysis of Bari airport CHP (combined heat and power) upgrade fueled with bioenergy from short chain," Renewable Energy, Elsevier, vol. 81(C), pages 499-508.
    4. Camprubí, Lluís & Malmusi, Davide & Mehdipanah, Roshanak & Palència, Laia & Molnar, Agnes & Muntaner, Carles & Borrell, Carme, 2016. "Façade insulation retrofitting policy implementation process and its effects on health equity determinants: A realist review," Energy Policy, Elsevier, vol. 91(C), pages 304-314.
    5. Davide Astiaso Garcia & Umberto Di Matteo & Fabrizio Cumo, 2015. "Selecting Eco-Friendly Thermal Systems for the “Vittoriale Degli Italiani” Historic Museum Building," Sustainability, MDPI, vol. 7(9), pages 1-19, September.
    6. De Boeck, L. & Verbeke, S. & Audenaert, A. & De Mesmaeker, L., 2015. "Improving the energy performance of residential buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 960-975.
    7. Lo Basso, Gianluigi & de Santoli, Livio & Albo, Angelo & Nastasi, Benedetto, 2015. "H2NG (hydrogen-natural gas mixtures) effects on energy performances of a condensing micro-CHP (combined heat and power) for residential applications: An expeditious assessment of water condensation an," Energy, Elsevier, vol. 84(C), pages 397-418.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Flavio Rosa, 2020. "Building-Integrated Photovoltaics (BIPV) in Historical Buildings: Opportunities and Constraints," Energies, MDPI, vol. 13(14), pages 1-28, July.
    2. El Asri, Najat & Nouira, Youness & Maaroufi, Ibtissam & Marfak, Abdelghafour & Saleh, Nour & Mharzi, Mohammed, 2022. "The policy of energy management in public buildings procurements through the study of the process of delegated project management - Case of Morocco," Energy Policy, Elsevier, vol. 165(C).
    3. Marco Valente & Matteo Sambucci & Abbas Sibai & Ettore Musacchi, 2020. "Multi-Physics Analysis for Rubber-Cement Applications in Building and Architectural Fields: A Preliminary Analysis," Sustainability, MDPI, vol. 12(15), pages 1-21, July.
    4. Tae-Hyoung Kim & Young-Sun Jeong, 2018. "Analysis of Energy-Related Greenhouse Gas Emission in the Korea’s Building Sector: Use National Energy Statistics," Energies, MDPI, vol. 11(4), pages 1-17, April.
    5. Carlo Iapige De Gaetani & Andrea Macchi & Pasquale Perri, 2020. "Joint Analysis of Cost and Energy Savings for Preliminary Design Alternative Assessment," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    6. Ainur Tukhtamisheva & Dinar Adilova & Karolis Banionis & Aurelija Levinskytė & Raimondas Bliūdžius, 2020. "Optimization of the Thermal Insulation Level of Residential Buildings in the Almaty Region of Kazakhstan," Energies, MDPI, vol. 13(18), pages 1-16, September.
    7. Mazzoni, Stefano & Ooi, Sean & Nastasi, Benedetto & Romagnoli, Alessandro, 2019. "Energy storage technologies as techno-economic parameters for master-planning and optimal dispatch in smart multi energy systems," Applied Energy, Elsevier, vol. 254(C).
    8. Francesco Mancini & Benedetto Nastasi, 2020. "Solar Energy Data Analytics: PV Deployment and Land Use," Energies, MDPI, vol. 13(2), pages 1-18, January.
    9. Hyemi Kim & Wonjun Park, 2018. "A Study of the Energy Efficiency Management in Green Standard for Energy and Environmental Design (G-SEED)-Certified Apartments in South Korea," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    10. Paolo Maria Congedo & Delia D’Agostino & Cristina Baglivo & Giuliano Tornese & Ilaria Zacà, 2016. "Efficient Solutions and Cost-Optimal Analysis for Existing School Buildings," Energies, MDPI, vol. 9(10), pages 1-24, October.
    11. Monjurul Hasan, A S M & Trianni, Andrea & Shukla, Nagesh & Katic, Mile, 2022. "A novel characterization based framework to incorporate industrial energy management services," Applied Energy, Elsevier, vol. 313(C).
    12. Joaquín Fuentes-del-Burgo & Elena Navarro-Astor & Nuno M. M. Ramos & João Poças Martins, 2021. "Exploring the Critical Barriers to the Implementation of Renewable Technologies in Existing University Buildings," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    13. Seyedeh Farzaneh Mousavi Motlagh & Ali Sohani & Mohammad Djavad Saghafi & Hoseyn Sayyaadi & Benedetto Nastasi, 2021. "The Road to Developing Economically Feasible Plans for Green, Comfortable and Energy Efficient Buildings," Energies, MDPI, vol. 14(3), pages 1-30, January.
    14. Remigiusz Wisniewski, 2021. "Design of Petri Net-Based Cyber-Physical Systems Oriented on the Implementation in Field Programmable Gate Arrays," Energies, MDPI, vol. 14(21), pages 1-25, October.
    15. Tafone, Alessio & Raj Thangavelu, Sundar & Morita, Shigenori & Romagnoli, Alessandro, 2023. "Design optimization of a novel cryo-polygeneration demonstrator developed in Singapore – Techno-economic feasibility study for a cooling dominated tropical climate," Applied Energy, Elsevier, vol. 330(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisa Pennacchia & Mariagrazia Tiberi & Elisa Carbonara & Davide Astiaso Garcia & Fabrizio Cumo, 2016. "Reuse and Upcycling of Municipal Waste for ZEB Envelope Design in European Urban Areas," Sustainability, MDPI, vol. 8(7), pages 1-11, June.
    2. Nastasi, Benedetto & Lo Basso, Gianluigi, 2016. "Hydrogen to link heat and electricity in the transition towards future Smart Energy Systems," Energy, Elsevier, vol. 110(C), pages 5-22.
    3. López-Ochoa, Luis M. & Las-Heras-Casas, Jesús & López-González, Luis M. & Olasolo-Alonso, Pablo, 2019. "Towards nearly zero-energy buildings in Mediterranean countries: Energy Performance of Buildings Directive evolution and the energy rehabilitation challenge in the Spanish residential sector," Energy, Elsevier, vol. 176(C), pages 335-352.
    4. Collins, Matthew & Dempsey, Seraphim & Curtis, John, 2017. "Financial incentives for residential energy efficiency investments in Ireland: Should the status quo be maintained?," Papers WP562, Economic and Social Research Institute (ESRI).
    5. Luis M. López-Ochoa & Jesús Las-Heras-Casas & Luis M. López-González & César García-Lozano, 2020. "Energy Renovation of Residential Buildings in Cold Mediterranean Zones Using Optimized Thermal Envelope Insulation Thicknesses: The Case of Spain," Sustainability, MDPI, vol. 12(6), pages 1-34, March.
    6. Fernandes, Marco S. & Rodrigues, Eugénio & Gaspar, Adélio Rodrigues & Costa, José J. & Gomes, Álvaro, 2019. "The impact of thermal transmittance variation on building design in the Mediterranean region," Applied Energy, Elsevier, vol. 239(C), pages 581-597.
    7. Baglivo, Cristina & Congedo, Paolo Maria & D'Agostino, Delia & Zacà, Ilaria, 2015. "Cost-optimal analysis and technical comparison between standard and high efficient mono-residential buildings in a warm climate," Energy, Elsevier, vol. 83(C), pages 560-575.
    8. Kristina Mjörnell & Paula Femenías & Kerstin Annadotter, 2019. "Renovation Strategies for Multi-Residential Buildings from the Record Years in Sweden—Profit-Driven or Socioeconomically Responsible?," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    9. Jinpeng Liu & Li Wang & Mohan Qiu & Jiang Zhu, 2016. "Promotion Potentiality and Optimal Strategies Analysis of Provincial Energy Efficiency in China," Sustainability, MDPI, vol. 8(8), pages 1-17, August.
    10. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    11. Nicholas Preston & Azadeh Maroufmashat & Hassan Riaz & Sami Barbouti & Ushnik Mukherjee & Peter Tang & Javan Wang & Ali Elkamel & Michael Fowler, 2021. "An Economic, Environmental and Safety Analysis of Using Hydrogen Enriched Natural Gas (HENG) in Industrial Facilities," Energies, MDPI, vol. 14(9), pages 1-21, April.
    12. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.
    13. Xin Liang & Geoffrey Qiping Shen & Li Guo, 2019. "Optimizing Incentive Policy of Energy-Efficiency Retrofit in Public Buildings: A Principal-Agent Model," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
    14. Jorge Cunha & Manuel Lopes Nunes & Fátima Lima, 2018. "Discerning the factors explaining the change in energy efficiency," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 163-179, December.
    15. El Asri, Najat & Nouira, Youness & Maaroufi, Ibtissam & Marfak, Abdelghafour & Saleh, Nour & Mharzi, Mohammed, 2022. "The policy of energy management in public buildings procurements through the study of the process of delegated project management - Case of Morocco," Energy Policy, Elsevier, vol. 165(C).
    16. Gourlis, Georgios & Kovacic, Iva, 2017. "Building Information Modelling for analysis of energy efficient industrial buildings – A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 953-963.
    17. Dietz, Annelore & Vera, Sergio & Bustamante, Waldo & Flamant, Gilles, 2020. "Multi-objective optimization to balance thermal comfort and energy use in a mining camp located in the Andes Mountains at high altitude," Energy, Elsevier, vol. 199(C).
    18. Gourlis, Georgios & Kovacic, Iva, 2016. "A study on building performance analysis for energy retrofit of existing industrial facilities," Applied Energy, Elsevier, vol. 184(C), pages 1389-1399.
    19. Kangji Li & Lei Pan & Wenping Xue & Hui Jiang & Hanping Mao, 2017. "Multi-Objective Optimization for Energy Performance Improvement of Residential Buildings: A Comparative Study," Energies, MDPI, vol. 10(2), pages 1-23, February.
    20. Meleddu, Marta & Pulina, Manuela, 2018. "Public spending on renewable energy in Italian regions," Renewable Energy, Elsevier, vol. 115(C), pages 1086-1098.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:7:p:522-:d:73536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.