IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i5p336-d69438.html
   My bibliography  Save this article

Assessment of Air-Pollution Control Policy’s Impact on China’s PV Power: A System Dynamics Analysis

Author

Listed:
  • Xiaodan Guo

    (School of Economics and Management, North China Electric Power University, Hui Long Guan, Chang Ping District, Beijing 102206, China)

  • Dongxiao Niu

    (School of Economics and Management, North China Electric Power University, Hui Long Guan, Chang Ping District, Beijing 102206, China)

  • Bowen Xiao

    (School of Economics and Management, North China Electric Power University, Hui Long Guan, Chang Ping District, Beijing 102206, China)

Abstract

Recently, China has brought out several air-pollution control policies, which indicate the prominent position that PV power hold in improving atmosphere environment. Under this policy environment, the development of China’s PV power will be greatly affected. Firstly, after analyzing the influencing path of air-pollution control policies on PV power, this paper built a system dynamics model, which can be used as a platform for predicting China’s PV power development in every policy scenario during 2015–2025. Secondly, different model parameters are put into the SD model to simulate three scenarios of air-pollution control policies. Comparisons between the simulated results of different policy scenarios measure the air-pollution control policy’s impact on China’s PV power in the aspect of generation, installed capacity, power curtailment and so on. This paper points out the long-term development pattern of China’s PV power under latest incentive policies, and provides reference for the policymakers to increase the effect and efficiency of air-pollution control policies.

Suggested Citation

  • Xiaodan Guo & Dongxiao Niu & Bowen Xiao, 2016. "Assessment of Air-Pollution Control Policy’s Impact on China’s PV Power: A System Dynamics Analysis," Energies, MDPI, vol. 9(5), pages 1-23, May.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:5:p:336-:d:69438
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/5/336/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/5/336/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Feng, Y.Y. & Chen, S.Q. & Zhang, L.X., 2013. "System dynamics modeling for urban energy consumption and CO2 emissions: A case study of Beijing, China," Ecological Modelling, Elsevier, vol. 252(C), pages 44-52.
    2. Zhang, Yu & Song, Junghyun & Hamori, Shigeyuki, 2011. "Impact of subsidy policies on diffusion of photovoltaic power generation," Energy Policy, Elsevier, vol. 39(4), pages 1958-1964, April.
    3. Jo, J.H. & Loomis, D.G. & Aldeman, M.R., 2013. "Optimum penetration of utility-scale grid-connected solar photovoltaic systems in Illinois," Renewable Energy, Elsevier, vol. 60(C), pages 20-26.
    4. Guo, Xiaopeng & Guo, Xiaodan, 2016. "Nuclear power development in China after the restart of new nuclear construction and approval: A system dynamics analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 999-1007.
    5. Liu, Liwei & Zong, Haijing & Zhao, Erdong & Chen, Chuxiang & Wang, Jianzhou, 2014. "Can China realize its carbon emission reduction goal in 2020: From the perspective of thermal power development," Applied Energy, Elsevier, vol. 124(C), pages 199-212.
    6. Liu, Da & Niu, Dongxiao & Wang, Hui & Fan, Leilei, 2014. "Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm," Renewable Energy, Elsevier, vol. 62(C), pages 592-597.
    7. Wang, Yu & Zhou, Sheng & Huo, Hong, 2014. "Cost and CO2 reductions of solar photovoltaic power generation in China: Perspectives for 2020," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 370-380.
    8. Li, Fujia & Dong, Suocheng & Li, Zehong & Li, Yu & Li, Shantong & Wan, Yongkun, 2012. "The improvement of CO2 emission reduction policies based on system dynamics method in traditional industrial region with large CO2 emission," Energy Policy, Elsevier, vol. 51(C), pages 683-695.
    9. Garcia, Humberto E. & Mohanty, Amit & Lin, Wen-Chiao & Cherry, Robert S., 2013. "Dynamic analysis of hybrid energy systems under flexible operation and variable renewable generation – Part II: Dynamic cost analysis," Energy, Elsevier, vol. 52(C), pages 17-26.
    10. Zhao, Xiaoli & Ma, Qian & Yang, Rui, 2013. "Factors influencing CO2 emissions in China's power industry: Co-integration analysis," Energy Policy, Elsevier, vol. 57(C), pages 89-98.
    11. Baltas, A.E. & Dervos, A.N., 2012. "Special framework for the spatial planning & the sustainable development of renewable energy sources," Renewable Energy, Elsevier, vol. 48(C), pages 358-363.
    12. Jeon, Chanwoong & Shin, Juneseuk, 2014. "Long-term renewable energy technology valuation using system dynamics and Monte Carlo simulation: Photovoltaic technology case," Energy, Elsevier, vol. 66(C), pages 447-457.
    13. Garcia, Humberto E. & Mohanty, Amit & Lin, Wen-Chiao & Cherry, Robert S., 2013. "Dynamic analysis of hybrid energy systems under flexible operation and variable renewable generation – Part I: Dynamic performance analysis," Energy, Elsevier, vol. 52(C), pages 1-16.
    14. Chen, Zhisong & Su, Shong-Iee Ivan, 2014. "Photovoltaic supply chain coordination with strategic consumers in China," Renewable Energy, Elsevier, vol. 68(C), pages 236-244.
    15. Guo, Xiaodan & Guo, Xiaopeng, 2015. "China's photovoltaic power development under policy incentives: A system dynamics analysis," Energy, Elsevier, vol. 93(P1), pages 589-598.
    16. Claudio Monteiro & Tiago Santos & L. Alfredo Fernandez-Jimenez & Ignacio J. Ramirez-Rosado & M. Sonia Terreros-Olarte, 2013. "Short-Term Power Forecasting Model for Photovoltaic Plants Based on Historical Similarity," Energies, MDPI, vol. 6(5), pages 1-20, May.
    17. Zhou, Sheng & Zhang, Xiliang, 2010. "Nuclear energy development in China: A study of opportunities and challenges," Energy, Elsevier, vol. 35(11), pages 4282-4288.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yingbo Qin & Wenping Wang, 2022. "Research on Ecological Compensation Mechanism for Energy Economy Sustainable Based on Evolutionary Game Model," Energies, MDPI, vol. 15(8), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Xiaodan & Guo, Xiaopeng, 2015. "China's photovoltaic power development under policy incentives: A system dynamics analysis," Energy, Elsevier, vol. 93(P1), pages 589-598.
    2. Yong Jiang & Yalin Lei & Li Li & Jianping Ge, 2016. "Mechanism of Fiscal and Taxation Policies in the Geothermal Industry in China," Energies, MDPI, vol. 9(9), pages 1-20, September.
    3. Guo, Xiaopeng & Guo, Xiaodan, 2016. "Nuclear power development in China after the restart of new nuclear construction and approval: A system dynamics analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 999-1007.
    4. Xiaopeng Guo & Xiaodan Guo & Jiahai Yuan, 2014. "Impact Analysis of Air Pollutant Emission Policies on Thermal Coal Supply Chain Enterprises in China," Sustainability, MDPI, vol. 7(1), pages 1-21, December.
    5. Liu, Dunnan & Liu, Mingguang & Xu, Erfeng & Pang, Bo & Guo, Xiaodan & Xiao, Bowen & Niu, Dongxiao, 2018. "Comprehensive effectiveness assessment of renewable energy generation policy: A partial equilibrium analysis in China," Energy Policy, Elsevier, vol. 115(C), pages 330-341.
    6. Chenjun Sun & Zengqiang Mi & Hui Ren & Fei Wang & Jing Chen & David Watts & Jinling Lu, 2018. "Study on the Incentives Mechanism for the Development of Distributed Photovoltaic Systems from a Long-Term Perspective," Energies, MDPI, vol. 11(5), pages 1-18, May.
    7. Xin-gang, Zhao & Wei, Wang & Ling, Wu, 2021. "A dynamic analysis of research and development incentive on China's photovoltaic industry based on system dynamics model," Energy, Elsevier, vol. 233(C).
    8. Sabo, Mahmoud Lurwan & Mariun, Norman & Hizam, Hashim & Mohd Radzi, Mohd Amran & Zakaria, Azmi, 2017. "Spatial matching of large-scale grid-connected photovoltaic power generation with utility demand in Peninsular Malaysia," Applied Energy, Elsevier, vol. 191(C), pages 663-688.
    9. Sampath Kumar Venkatachary & Jagdish Prasad & Ravi Samikannu & Annamalai Alagappan & Leo John Baptist & Raymon Antony Raj, 2020. "Macro Economics of Virtual Power Plant for Rural Areas of Botswana," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 196-207.
    10. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    11. Caballero, F. & Sauma, E. & Yanine, F., 2013. "Business optimal design of a grid-connected hybrid PV (photovoltaic)-wind energy system without energy storage for an Easter Island's block," Energy, Elsevier, vol. 61(C), pages 248-261.
    12. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    13. Hamilton, James & Negnevitsky, Michael & Wang, Xiaolin & Lyden, Sarah, 2019. "High penetration renewable generation within Australian isolated and remote power systems," Energy, Elsevier, vol. 168(C), pages 684-692.
    14. Teng, Minmin & Lv, Kunfeng & Han, Chuanfeng & Liu, Pihui, 2023. "Trading behavior strategy of power plants and the grid under renewable portfolio standards in China: A tripartite evolutionary game analysis," Energy, Elsevier, vol. 284(C).
    15. Pierobon, Leonardo & Casati, Emiliano & Casella, Francesco & Haglind, Fredrik & Colonna, Piero, 2014. "Design methodology for flexible energy conversion systems accounting for dynamic performance," Energy, Elsevier, vol. 68(C), pages 667-679.
    16. Xingpeng Chen & Guokui Wang & Xiaojia Guo & Jinxiu Fu, 2016. "An Analysis Based on SD Model for Energy-Related CO 2 Mitigation in the Chinese Household Sector," Energies, MDPI, vol. 9(12), pages 1-18, December.
    17. Zendehboudi, Sohrab & Rezaei, Nima & Lohi, Ali, 2018. "Applications of hybrid models in chemical, petroleum, and energy systems: A systematic review," Applied Energy, Elsevier, vol. 228(C), pages 2539-2566.
    18. Comodi, Gabriele & Renzi, Massimiliano & Cioccolanti, Luca & Caresana, Flavio & Pelagalli, Leonardo, 2015. "Hybrid system with micro gas turbine and PV (photovoltaic) plant: Guidelines for sizing and management strategies," Energy, Elsevier, vol. 89(C), pages 226-235.
    19. Chung, Cheng-Ta & Hung, Yi-Hsuan, 2015. "Performance and energy management of a novel full hybrid electric powertrain system," Energy, Elsevier, vol. 89(C), pages 626-636.
    20. Song, Yazhi & Liu, Tiansen & Ye, Bin & Li, Yin, 2020. "Linking carbon market and electricity market for promoting the grid parity of photovoltaic electricity in China," Energy, Elsevier, vol. 211(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:5:p:336-:d:69438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.