IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i12p1053-d85177.html
   My bibliography  Save this article

Profitability Variations of a Solar System with an Evacuated Tube Collector According to Schedules and Frequency of Hot Water Demand

Author

Listed:
  • Carlos J. Porras-Prieto

    (School of Agricultural, Food and Biosystems Engineering, Agroforestry Engineering Department, Technical University of Madrid, 28040 Madrid, Spain)

  • Susana Benedicto-Schönemann

    (School of Agricultural, Food and Biosystems Engineering, Agroforestry Engineering Department, Technical University of Madrid, 28040 Madrid, Spain)

  • Fernando R. Mazarrón

    (School of Agricultural, Food and Biosystems Engineering, Agroforestry Engineering Department, Technical University of Madrid, 28040 Madrid, Spain)

  • Rosa M. Benavente

    (School of Agricultural, Food and Biosystems Engineering, Agroforestry Engineering Department, Technical University of Madrid, 28040 Madrid, Spain)

Abstract

The use of solar water heating systems with evacuated tube collectors has been experiencing a rapid growth in recent years. Times when there is demand for hot water, the days of use and the volumes demanded may determine the profitability of these systems, even within the same city. Therefore, this paper characterizes the behavior of a solar system with active circulation with the objective of determining the profitability variations according to the timing and schedule of demand. Through a simplified methodology based on regression equations, calculated for each hour of the day based on data from an experimental facility, the useful energy is estimated from the time and frequency of the demand for hot water at 60 °C. The analysis of the potential profitability of the system in more than 1000 scenarios analyzed shows huge differences depending on the number of days when the water is demanded, the time when demand occurs, the irradiation and the average price of energy. In cities with high irradiation and high energy prices, the system could be profitable even in homes where it is used only on weekends. The study of profitability in a building of 10 homes shows that by applying an average European household’s profile for hot water demand, levels close to full potential would be reached; for this, it is necessary to optimize the collection surface.

Suggested Citation

  • Carlos J. Porras-Prieto & Susana Benedicto-Schönemann & Fernando R. Mazarrón & Rosa M. Benavente, 2016. "Profitability Variations of a Solar System with an Evacuated Tube Collector According to Schedules and Frequency of Hot Water Demand," Energies, MDPI, vol. 9(12), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:12:p:1053-:d:85177
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/12/1053/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/12/1053/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Myeong Jin Ko, 2015. "Analysis and Optimization Design of a Solar Water Heating System Based on Life Cycle Cost Using a Genetic Algorithm," Energies, MDPI, vol. 8(10), pages 1-24, October.
    2. Greening, Benjamin & Azapagic, Adisa, 2014. "Domestic solar thermal water heating: A sustainable option for the UK?," Renewable Energy, Elsevier, vol. 63(C), pages 23-36.
    3. Wang, Zhangyuan & Yang, Wansheng & Qiu, Feng & Zhang, Xiangmei & Zhao, Xudong, 2015. "Solar water heating: From theory, application, marketing and research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 68-84.
    4. Sabiha, M.A. & Saidur, R. & Mekhilef, Saad & Mahian, Omid, 2015. "Progress and latest developments of evacuated tube solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1038-1054.
    5. Myeong Jin Ko, 2015. "Multi-Objective Optimization Design for Indirect Forced-Circulation Solar Water Heating System Using NSGA-II," Energies, MDPI, vol. 8(11), pages 1-25, November.
    6. Ayompe, L.M. & Duffy, A. & Mc Keever, M. & Conlon, M. & McCormack, S.J., 2011. "Comparative field performance study of flat plate and heat pipe evacuated tube collectors (ETCs) for domestic water heating systems in a temperate climate," Energy, Elsevier, vol. 36(5), pages 3370-3378.
    7. Azad, E., 2012. "Assessment of three types of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2833-2838.
    8. Lin, W.M. & Chang, K.C. & Chung, K.M., 2015. "Payback period for residential solar water heaters in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 901-906.
    9. Myeong Jin Ko, 2015. "A Novel Design Method for Optimizing an Indirect Forced Circulation Solar Water Heating System Based on Life Cycle Cost Using a Genetic Algorithm," Energies, MDPI, vol. 8(10), pages 1-26, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikolay Tsvetkov & Stanislav Boldyryev & Aleksandr Shilin & Yuriy Krivoshein & Aleksandr Tolstykh, 2022. "Hardware and Software Implementation for Solar Hot Water System in Northern Regions of Russia," Energies, MDPI, vol. 15(4), pages 1-18, February.
    2. Luis Velazquez & Sandra Villalba & Ricardo García & Nora Munguía, 2019. "Life Cycle Evaluation of Sustainable Practices in a Sauna Bath," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
    3. Carlos J. Porras-Prieto & Juan Lizcano & José L. García & Fernando R. Mazarrón, 2018. "Energy Saving in an ETC Solar System to Produce High Temperature Water," Energies, MDPI, vol. 11(4), pages 1-14, April.
    4. Roumpedakis, Tryfon C. & Loumpardis, George & Monokrousou, Evropi & Braimakis, Konstantinos & Charalampidis, Antonios & Karellas, Sotirios, 2020. "Exergetic and economic analysis of a solar driven small scale ORC," Renewable Energy, Elsevier, vol. 157(C), pages 1008-1024.
    5. Aránzazu Fernández-García & Adel Juaidi & Florian Sutter & Lucía Martínez-Arcos & Francisco Manzano-Agugliaro, 2018. "Solar Reflector Materials Degradation Due to the Sand Deposited on the Backside Protective Paints," Energies, MDPI, vol. 11(4), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. García, José Luis & Porras-Prieto, Carlos Javier & Benavente, Rosa María & Gómez-Villarino, María Teresa & Mazarrón, Fernando R., 2019. "Profitability of a solar water heating system with evacuated tube collector in the meat industry," Renewable Energy, Elsevier, vol. 131(C), pages 966-976.
    2. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    3. Xun Yang & Teng Xiong & Jing Liang Dong & Wen Xin Li & Yong Wang, 2017. "Investigation of the Dynamic Melting Process in a Thermal Energy Storage Unit Using a Helical Coil Heat Exchanger," Energies, MDPI, vol. 10(8), pages 1-18, August.
    4. Xun Yang & Yong Wang & Teng Xiong, 2017. "Numerical and Experimental Study on a Solar Water Heating System in Lhasa," Energies, MDPI, vol. 10(7), pages 1-13, July.
    5. Sajid Mehmood & Serguey A. Maximov & Hannah Chalmers & Daniel Friedrich, 2020. "Energetic, Economic and Environmental (3E) Assessment and Design of Solar-Powered HVAC Systems in Pakistan," Energies, MDPI, vol. 13(17), pages 1-25, August.
    6. Tayyab, Muhammad & Cheema, Taqi Ahmad & Malik, Muhammad Sohail & Muzaffar, Atif & Sajid, Muhammad Bilal & Park, Cheol Woo, 2020. "Investigation of thermal energy exchange potential of a gravitational water vortex," Renewable Energy, Elsevier, vol. 162(C), pages 1380-1398.
    7. Liu, Zhijian & Liu, Yuanwei & He, Bao-Jie & Xu, Wei & Jin, Guangya & Zhang, Xutao, 2019. "Application and suitability analysis of the key technologies in nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 329-345.
    8. Li, Hong & Liu, Hongyuan & Li, Min, 2022. "Review on heat pipe based solar collectors: Classifications, performance evaluation and optimization, and effectiveness improvements," Energy, Elsevier, vol. 244(PA).
    9. Zakariya Kaneesamkandi & Abdulaziz Almujahid & Basharat Salim, 2022. "Selection of an Appropriate Solar Thermal Technology for Solar Vapor Absorption Cooling—An MADM Approach," Energies, MDPI, vol. 15(5), pages 1-25, March.
    10. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    11. Casanovas-Rubio, Maria del Mar & Armengou, Jaume, 2018. "Decision-making tool for the optimal selection of a domestic water-heating system considering economic, environmental and social criteria: Application to Barcelona (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 741-753.
    12. Allouhi, A. & Benzakour Amine, M. & Buker, M.S. & Kousksou, T. & Jamil, A., 2019. "Forced-circulation solar water heating system using heat pipe-flat plate collectors: Energy and exergy analysis," Energy, Elsevier, vol. 180(C), pages 429-443.
    13. Bouadila, Salwa & Baddadi, Sara & Rehman, Tauseef-ur & Ayed, Rabeb, 2022. "Experimental investigation on the thermal appraisal of heat pipe-evacuated tube collector-based water heating system integrated with PCM," Renewable Energy, Elsevier, vol. 199(C), pages 382-394.
    14. Huang, Xiaona & Wang, Qiliang & Yang, Honglun & Zhong, Shuai & Jiao, Dongsheng & Zhang, Kaili & Li, Mujun & Pei, Gang, 2019. "Theoretical and experimental studies of impacts of heat shields on heat pipe evacuated tube solar collector," Renewable Energy, Elsevier, vol. 138(C), pages 999-1009.
    15. Hussein, Ahmed Kadhim, 2016. "Applications of nanotechnology to improve the performance of solar collectors – Recent advances and overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 767-792.
    16. Sokhansefat, Tahmineh & Kasaeian, Alibakhsh & Rahmani, Kiana & Heidari, Ameneh Haji & Aghakhani, Faezeh & Mahian, Omid, 2018. "Thermoeconomic and environmental analysis of solar flat plate and evacuated tube collectors in cold climatic conditions," Renewable Energy, Elsevier, vol. 115(C), pages 501-508.
    17. Myeong Jin Ko, 2015. "Multi-Objective Optimization Design for Indirect Forced-Circulation Solar Water Heating System Using NSGA-II," Energies, MDPI, vol. 8(11), pages 1-25, November.
    18. Chopra, K. & Tyagi, V.V. & Pandey, A.K. & Sari, Ahmet, 2018. "Global advancement on experimental and thermal analysis of evacuated tube collector with and without heat pipe systems and possible applications," Applied Energy, Elsevier, vol. 228(C), pages 351-389.
    19. Carlos J. Porras-Prieto & Juan Lizcano & José L. García & Fernando R. Mazarrón, 2018. "Energy Saving in an ETC Solar System to Produce High Temperature Water," Energies, MDPI, vol. 11(4), pages 1-14, April.
    20. Mathew, Adarsh Abi & Thangavel, Venugopal, 2021. "A novel thermal energy storage integrated evacuated tube heat pipe solar dryer for agricultural products: Performance and economic evaluation," Renewable Energy, Elsevier, vol. 179(C), pages 1674-1693.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:12:p:1053-:d:85177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.