IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i20p5647-d276090.html
   My bibliography  Save this article

Life Cycle Evaluation of Sustainable Practices in a Sauna Bath

Author

Listed:
  • Luis Velazquez

    (Sustainability Graduate Program. Industrial Engineering Department, University of Sonora, 83000 Hermosillo, Sonora, Mexico)

  • Sandra Villalba

    (Sustainability Graduate Program. Industrial Engineering Department, University of Sonora, 83000 Hermosillo, Sonora, Mexico)

  • Ricardo García

    (Sustainability Graduate Program. Industrial Engineering Department, University of Sonora, 83000 Hermosillo, Sonora, Mexico)

  • Nora Munguía

    (Sustainability Graduate Program. Industrial Engineering Department, University of Sonora, 83000 Hermosillo, Sonora, Mexico)

Abstract

To battle climate change, the search for sustainable solutions and the reduction of environmental impacts are activities that must be pursued in all areas of human life. This study aimed to conduct a Life Cycle Evaluation of the environmental aspects and potential benefits associated with two different innovative adaptations to a sauna bath. The first adaptation is related to the selection of wooden materials for the bath’s interior construction; the second is related to the source of thermal energy. For the selection of wooden materials, experiments were performed to evaluate a graphene coating and its capacity to increase the durability of wooden materials. For the thermal energy source, a solar air heater was experimentally assessed to confirm its capacity to supply the thermal energy required to operate the sauna bath. Finally, the material selection and the heating operation were integrated in a Life Cycle Impact Assessment, contrasting two scenarios: “business as usual sauna bath” and “sustainable sauna bath.” The findings showed a significant reduction of around 61% of total emissions from the application of a solar air heater and wooden materials treated with a graphene coating. At the end of this study, “human well-being,” “ecosystems,” and “resources” were expressed in monetary values to assess the impact of the above practices in a sauna bath.

Suggested Citation

  • Luis Velazquez & Sandra Villalba & Ricardo García & Nora Munguía, 2019. "Life Cycle Evaluation of Sustainable Practices in a Sauna Bath," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5647-:d:276090
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/20/5647/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/20/5647/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sokka, L. & Sinkko, T. & Holma, A. & Manninen, K. & Pasanen, K. & Rantala, M. & Leskinen, P., 2016. "Environmental impacts of the national renewable energy targets – A case study from Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1599-1610.
    2. Weidema, Bo Pedersen, 2009. "Using the budget constraint to monetarise impact assessment results," Ecological Economics, Elsevier, vol. 68(6), pages 1591-1598, April.
    3. Carlos J. Porras-Prieto & Susana Benedicto-Schönemann & Fernando R. Mazarrón & Rosa M. Benavente, 2016. "Profitability Variations of a Solar System with an Evacuated Tube Collector According to Schedules and Frequency of Hot Water Demand," Energies, MDPI, vol. 9(12), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anni Orola & Anna Härri & Jarkko Levänen & Ville Uusitalo & Stig Irving Olsen, 2022. "Assessing WELBY Social Life Cycle Assessment Approach through Cobalt Mining Case Study," Sustainability, MDPI, vol. 14(18), pages 1-26, September.
    2. Shew, Aaron M. & Nalley, Lawton L. & Durand-Morat, Alvaro & Meredith, Kylie & Parajuli, Ranjan & Thoma, Greg & Henry, Christopher G., 2021. "Holistically valuing public investments in agricultural water conservation," Agricultural Water Management, Elsevier, vol. 252(C).
    3. Lin, Boqiang & He, Jiaxin, 2017. "Is biomass power a good choice for governments in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1218-1230.
    4. Muhammad Salim Butt & Hifsa Shahid & Farhan Ahmed Butt & Iqra Farhat & Munazza Sadaf & Muhammad Raashid & Ahmad Taha, 2022. "Power Generation Analysis of Terrestrial Ultraviolet-Assisted Solid Oxide Electrolyzer Cell," Energies, MDPI, vol. 15(3), pages 1-14, January.
    5. Bell, David R. & Silalertruksa, Thapat & Gheewala, Shabbir H. & Kamens, Richard, 2011. "The net cost of biofuels in Thailand--An economic analysis," Energy Policy, Elsevier, vol. 39(2), pages 834-843, February.
    6. Ahlroth, Sofia, 2014. "The use of valuation and weighting sets in environmental impact assessment," Resources, Conservation & Recycling, Elsevier, vol. 85(C), pages 34-41.
    7. Rosalie Arendt & Till M. Bachmann & Masaharu Motoshita & Vanessa Bach & Matthias Finkbeiner, 2020. "Comparison of Different Monetization Methods in LCA: A Review," Sustainability, MDPI, vol. 12(24), pages 1-39, December.
    8. Tobias Junne & Sonja Simon & Jens Buchgeister & Maximilian Saiger & Manuel Baumann & Martina Haase & Christina Wulf & Tobias Naegler, 2020. "Environmental Sustainability Assessment of Multi-Sectoral Energy Transformation Pathways: Methodological Approach and Case Study for Germany," Sustainability, MDPI, vol. 12(19), pages 1-28, October.
    9. Säll, Sarah & Gren, Ing-Marie, 2015. "Effects of an environmental tax on meat and dairy consumption in Sweden," Food Policy, Elsevier, vol. 55(C), pages 41-53.
    10. Meysam Karami Rad & Mahmoud Omid & Ali Rajabipour & Fariba Tajabadi & Lasse Aistrup Rosendahl & Alireza Rezaniakolaei, 2018. "Optimum Thermal Concentration of Solar Thermoelectric Generators (STEG) in Realistic Meteorological Condition," Energies, MDPI, vol. 11(9), pages 1-16, September.
    11. Ayşe Bayazıt Subaşı & Elçin Filiz Taş, 2023. "Single Score Environmental Performances of Roof Coverings," Sustainability, MDPI, vol. 15(5), pages 1-15, March.
    12. Jørgen Dejgård Jensen & Henrik Saxe & Sigrid Denver, 2015. "Cost-Effectiveness of a New Nordic Diet as a Strategy for Health Promotion," IJERPH, MDPI, vol. 12(7), pages 1-22, June.
    13. Abdullah Emre Keleş & Ecem Önen & Jarosław Górecki, 2022. "Determination of Green Building Awareness: A Study in Turkey," Sustainability, MDPI, vol. 14(19), pages 1-12, September.
    14. Cátia da Silva & Ana Paula Barbosa‐Póvoa & Ana Carvalho, 2022. "Towards sustainable development: Green supply chain design and planning using monetization methods," Business Strategy and the Environment, Wiley Blackwell, vol. 31(4), pages 1369-1394, May.
    15. Ewelina Olba-Zięty & Jakub Jan Zięty & Mariusz Jerzy Stolarski, 2023. "External Environmental Costs of Solid Biomass Production against the Legal and Political Background in Europe," Energies, MDPI, vol. 16(10), pages 1-27, May.
    16. S. Ferreira & M. Cabral & N.F. da Cruz & P. Simões & R.C. Marques, 2017. "The costs and benefits of packaging waste management systems in Europe: the perspective of local authorities," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 60(5), pages 773-791, May.
    17. Pilpola, Sannamari & Lund, Peter D., 2018. "Effect of major policy disruptions in energy system transition: Case Finland," Energy Policy, Elsevier, vol. 116(C), pages 323-336.
    18. Oskar Juszczyk & Juliusz Juszczyk & Sławomir Juszczyk & Josu Takala, 2022. "Barriers for Renewable Energy Technologies Diffusion: Empirical Evidence from Finland and Poland," Energies, MDPI, vol. 15(2), pages 1-14, January.
    19. Marcell Mariano Corrêa Maceno & Samuel João & Danielle Raphaela Voltolini & Izabel Cristina Zattar, 2023. "Life cycle assessment and circularity evaluation of the non-medical masks in the Covid-19 pandemic: a Brazilian case," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8055-8082, August.
    20. Nguyen, Thu Lan Thi & Laratte, Bertrand & Guillaume, Bertrand & Hua, Anthony, 2016. "Quantifying environmental externalities with a view to internalizing them in the price of products, using different monetization models," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 13-23.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5647-:d:276090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.