IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i11p12345-12864d58715.html
   My bibliography  Save this article

Modeling and Optimization of the Medium-Term Units Commitment of Thermal Power

Author

Listed:
  • Shengli Liao

    (Institute of Hydropower System & Hydroinformatics, Dalian University of Technology, Dalian 116024, China)

  • Zhifu Li

    (Institute of Hydropower System & Hydroinformatics, Dalian University of Technology, Dalian 116024, China)

  • Gang Li

    (Institute of Hydropower System & Hydroinformatics, Dalian University of Technology, Dalian 116024, China)

  • Jiayang Wang

    (Institute of Hydropower System & Hydroinformatics, Dalian University of Technology, Dalian 116024, China)

  • Xinyu Wu

    (Institute of Hydropower System & Hydroinformatics, Dalian University of Technology, Dalian 116024, China)

Abstract

Coal-fired thermal power plants, which represent the largest proportion of China’s electric power system, are very sluggish in responding to power system load demands. Thus, a reasonable and feasible scheme for the medium-term optimal commitment of thermal units (MOCTU) can ensure that the generation process runs smoothly and minimizes the start-up and shut-down times of thermal units. In this paper, based on the real-world and practical demands of power dispatch centers in China, a flexible mathematical model for MOCTU that uses equal utilization hours for the installed capacity of all thermal power plants as the optimization goal and that considers the award hours for MOCTU is developed. MOCTU is a unit commitment (UC) problem with characteristics of large-scale, high dimensions and nonlinearity. For optimization, an improved progressive optimality algorithm (IPOA) offering the advantages of POA is adopted to overcome the drawback of POA of easily falling into the local optima. In the optimization process, strategies of system operating capacity equalization and single station operating peak combination are introduced to move the target solution from the boundary constraints along the target isopleths into the feasible solution’s interior to guarantee the global optima. The results of a case study consisting of nine thermal power plants with 27 units show that the presented algorithm can obtain an optimal solution and is competent in solving the MOCTU with high efficiency and accuracy as well as that the developed simulation model can be applied to practical engineering needs.

Suggested Citation

  • Shengli Liao & Zhifu Li & Gang Li & Jiayang Wang & Xinyu Wu, 2015. "Modeling and Optimization of the Medium-Term Units Commitment of Thermal Power," Energies, MDPI, vol. 8(11), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:11:p:12345-12864:d:58715
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/11/12345/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/11/12345/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyeon-Gon Park & Jae-Kun Lyu & YongCheol Kang & Jong-Keun Park, 2014. "Unit Commitment Considering Interruptible Load for Power System Operation with Wind Power," Energies, MDPI, vol. 7(7), pages 1-19, July.
    2. Dang, Chuangyin & Li, Minqiang, 2007. "A floating-point genetic algorithm for solving the unit commitment problem," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1370-1395, September.
    3. Niknam, Taher & Khodaei, Amin & Fallahi, Farhad, 2009. "A new decomposition approach for the thermal unit commitment problem," Applied Energy, Elsevier, vol. 86(9), pages 1667-1674, September.
    4. Liu, Liwei & Zong, Haijing & Zhao, Erdong & Chen, Chuxiang & Wang, Jianzhou, 2014. "Can China realize its carbon emission reduction goal in 2020: From the perspective of thermal power development," Applied Energy, Elsevier, vol. 124(C), pages 199-212.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Zhong-kai & Niu, Wen-jing & Wang, Wen-chuan & Zhou, Jian-zhong & Cheng, Chun-tian, 2019. "A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy," Energy, Elsevier, vol. 175(C), pages 618-629.
    2. Shengli Liao & Hongye Zhao & Gang Li & Benxi Liu, 2019. "Short-Term Load Dispatching Method for a Diversion Hydropower Plant with Multiple Turbines in One Tunnel Using a Two-Stage Model," Energies, MDPI, vol. 12(8), pages 1-18, April.
    3. Gang Wang & Daihai You & Suhua Lou & Zhe Zhang & Li Dai, 2017. "Economic Valuation of Low-Load Operation with Auxiliary Firing of Coal-Fired Units," Energies, MDPI, vol. 10(9), pages 1-20, September.
    4. Alok K. Tripathi, 2021. "Crisis of Survival of Thermal Power Plants in India due to Consistently Falling Capacity Utilization Factors Responsible and Future Outlook," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 328-337.
    5. Ying-Yi Hong, 2016. "Electric Power Systems Research," Energies, MDPI, vol. 9(10), pages 1-4, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).
    2. Xindong Wang & Chun Yan & Wei Liu & Xinhong Liu, 2022. "Research on Carbon Emissions Prediction Model of Thermal Power Plant Based on SSA-LSTM Algorithm with Boiler Feed Water Influencing Factors," Sustainability, MDPI, vol. 14(23), pages 1-26, November.
    3. Chang, Jianxia & Li, Yunyun & Yuan, Meng & Wang, Yimin, 2017. "Efficiency evaluation of hydropower station operation: A case study of Longyangxia station in the Yellow River, China," Energy, Elsevier, vol. 135(C), pages 23-31.
    4. Chen, Yen-Haw & Lu, Su-Ying & Chang, Yung-Ruei & Lee, Ta-Tung & Hu, Ming-Che, 2013. "Economic analysis and optimal energy management models for microgrid systems: A case study in Taiwan," Applied Energy, Elsevier, vol. 103(C), pages 145-154.
    5. Weijun Wang & Weisong Peng & Jiaming Xu & Ran Zhang & Yaxuan Zhao, 2018. "Driving Factor Analysis and Forecasting of CO 2 Emissions from Power Output in China Using Scenario Analysis and CSCWOA-ELM Method," Energies, MDPI, vol. 11(10), pages 1-17, October.
    6. Alexander Franz & Julia Rieck & Jürgen Zimmermann, 2019. "Fix-and-optimize procedures for solving the long-term unit commitment problem with pumped storages," Annals of Operations Research, Springer, vol. 274(1), pages 241-265, March.
    7. Syeda Tayyaba Ijaz & Sumayya Chughtai, 2022. "The Impact of Financial, Economic and Environmental Factors on Energy Efficiency, Intensity, and Dependence: The Moderating Role of Governance and Institutional Quality," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 15-31, July.
    8. Mu, Yaqian & Wang, Can & Cai, Wenjia, 2018. "The economic impact of China's INDC: Distinguishing the roles of the renewable energy quota and the carbon market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2955-2966.
    9. Glotić, Arnel & Zamuda, Aleš, 2015. "Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution," Applied Energy, Elsevier, vol. 141(C), pages 42-56.
    10. Cheng, Rui & Xu, Zhaofeng & Liu, Pei & Wang, Zhe & Li, Zheng & Jones, Ian, 2015. "A multi-region optimization planning model for China’s power sector," Applied Energy, Elsevier, vol. 137(C), pages 413-426.
    11. Xiaohua Zhang & Jun Xie & Zhengwei Zhu & Jianfeng Zheng & Hao Qiang & Hailong Rong, 2016. "Smart Grid Cost-Emission Unit Commitment via Co-Evolutionary Agents," Energies, MDPI, vol. 9(10), pages 1-13, October.
    12. Goudarzi, Arman & Swanson, Andrew G. & Van Coller, John & Siano, Pierluigi, 2017. "Smart real-time scheduling of generating units in an electricity market considering environmental aspects and physical constraints of generators," Applied Energy, Elsevier, vol. 189(C), pages 667-696.
    13. Abdul Rauf & Mahmoud Kassas & Muhammad Khalid, 2022. "Data-Driven Optimal Battery Storage Sizing for Grid-Connected Hybrid Distributed Generations Considering Solar and Wind Uncertainty," Sustainability, MDPI, vol. 14(17), pages 1-27, September.
    14. Weibo Zhao & Dongxiao Niu, 2017. "Prediction of CO 2 Emission in China’s Power Generation Industry with Gauss Optimized Cuckoo Search Algorithm and Wavelet Neural Network Based on STIRPAT model with Ridge Regression," Sustainability, MDPI, vol. 9(12), pages 1-15, December.
    15. Guo, Xiaodan & Guo, Xiaopeng, 2015. "China's photovoltaic power development under policy incentives: A system dynamics analysis," Energy, Elsevier, vol. 93(P1), pages 589-598.
    16. Xiaopeng Guo & Xiaodan Guo & Jiahai Yuan, 2014. "Impact Analysis of Air Pollutant Emission Policies on Thermal Coal Supply Chain Enterprises in China," Sustainability, MDPI, vol. 7(1), pages 1-21, December.
    17. Xiaodan Guo & Dongxiao Niu & Bowen Xiao, 2016. "Assessment of Air-Pollution Control Policy’s Impact on China’s PV Power: A System Dynamics Analysis," Energies, MDPI, vol. 9(5), pages 1-23, May.
    18. Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2014. "Short-term electricity planning with increase wind capacity," Energy, Elsevier, vol. 69(C), pages 12-22.
    19. Xin-Long Xu & Hsing Hung Chen, 2020. "Exploring the relationships between environmental management and financial sustainability in the energy industry: Linear and nonlinear effects," Energy & Environment, , vol. 31(7), pages 1281-1300, November.
    20. Chen, Jiandong & Cheng, Shulei & Song, Malin & Wu, Yinyin, 2016. "A carbon emissions reduction index: Integrating the volume and allocation of regional emissions," Applied Energy, Elsevier, vol. 184(C), pages 1154-1164.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:11:p:12345-12864:d:58715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.