IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i4p1802-1820d24605.html
   My bibliography  Save this article

The Use of Energy Storage Systems for Supporting the Voltage Needs of Urban and Suburban Railway Contact Lines

Author

Listed:
  • Diego Iannuzzi

    (Electrical Engineering Department, University of Federico II, Naples, via Claudio 21, 80125 Naples, Italy)

  • Enrico Pagano

    (Electrical Engineering Department, University of Federico II, Naples, via Claudio 21, 80125 Naples, Italy)

  • Pietro Tricoli

    (School of Electronic, Electrical and Computer Engineering, University of Birmingham, Gisbert Kapp Building, Birmingham B15 2TT, UK)

Abstract

The paper aims to contribute to the use of electric double layer capacitor (EDLC) sets for boosting voltages of contact lines in urban and suburban railway traction systems. Different electrical configurations of contact lines are considered and investigated. For each of them, proper mathematical models are suggested to evaluate the electrical performances of the contact lines. They give rise, also, to sample design procedures for the sizing of the most appropriate energy storage systems, to be distributed along the lines, for boosting line voltages and avoiding undesired voltage drops. A numerical example based on the “Cumana” suburban Naples railway network is presented to give an idea of the weights and sizes of electric double layer capacitors needed to boost the voltage of a sample contact line. In particular, three different EDLC systems, for a overall installed energy of 9.6 kWh, have been placed nearby the stations presenting the highest voltage drops during the most representative situation of trains’ service. The new voltage drop is equal to 32% of that obtained in absence of EDLCs.

Suggested Citation

  • Diego Iannuzzi & Enrico Pagano & Pietro Tricoli, 2013. "The Use of Energy Storage Systems for Supporting the Voltage Needs of Urban and Suburban Railway Contact Lines," Energies, MDPI, vol. 6(4), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:4:p:1802-1820:d:24605
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/4/1802/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/4/1802/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Noshin Omar & Mohamed Daowd & Peter van den Bossche & Omar Hegazy & Jelle Smekens & Thierry Coosemans & Joeri van Mierlo, 2012. "Rechargeable Energy Storage Systems for Plug-in Hybrid Electric Vehicles—Assessment of Electrical Characteristics," Energies, MDPI, vol. 5(8), pages 1-37, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhongping Yang & Zhihong Yang & Huan Xia & Fei Lin & Feiqin Zhu, 2017. "Supercapacitor State Based Control and Optimization for Multiple Energy Storage Devices Considering Current Balance in Urban Rail Transit," Energies, MDPI, vol. 10(4), pages 1-19, April.
    2. Meishner, Fabian & Ünlübayir, Cem & Sauer, Dirk Uwe, 2023. "Model-based investigation of an uncontrolled LTO wayside energy storage system in a 750 V tram grid," Applied Energy, Elsevier, vol. 331(C).
    3. Wenzheng Xu & Nelson Hon Lung Chan & Siu Wing Or & Siu Lau Ho & Ka Wing Chan, 2017. "A New Control Method for a Bi-Directional Phase-Shift-Controlled DC-DC Converter with an Extended Load Range," Energies, MDPI, vol. 10(10), pages 1-17, October.
    4. Mihaela Popescu & Alexandru Bitoleanu, 2019. "A Review of the Energy Efficiency Improvement in DC Railway Systems," Energies, MDPI, vol. 12(6), pages 1-25, March.
    5. Alejandro Cunillera & Adrián Fernández-Rodríguez & Asunción P. Cucala & Antonio Fernández-Cardador & Maria Carmen Falvo, 2020. "Assessment of the Worthwhileness of Efficient Driving in Railway Systems with High-Receptivity Power Supplies," Energies, MDPI, vol. 13(7), pages 1-24, April.
    6. Huan Xia & Huaixin Chen & Zhongping Yang & Fei Lin & Bin Wang, 2015. "Optimal Energy Management, Location and Size for Stationary Energy Storage System in a Metro Line Based on Genetic Algorithm," Energies, MDPI, vol. 8(10), pages 1-23, October.
    7. Bin Wang & Zhongping Yang & Fei Lin & Wei Zhao, 2014. "An Improved Genetic Algorithm for Optimal Stationary Energy Storage System Locating and Sizing," Energies, MDPI, vol. 7(10), pages 1-25, October.
    8. Adrián Fernández-Rodríguez & Antonio Fernández-Cardador & Asunción P. Cucala & Maria Carmen Falvo, 2019. "Energy Efficiency and Integration of Urban Electrical Transport Systems: EVs and Metro-Trains of Two Real European Lines," Energies, MDPI, vol. 12(3), pages 1-20, January.
    9. Mikołaj Bartłomiejczyk & Leszek Jarzebowicz & Jiří Kohout, 2022. "Compensation of Voltage Drops in Trolleybus Supply System Using Battery-Based Buffer Station," Energies, MDPI, vol. 15(5), pages 1-15, February.
    10. Heng Li & Jun Peng & Weirong Liu & Zhiwu Huang, 2015. "Stationary Charging Station Design for Sustainable Urban Rail Systems: A Case Study at Zhuzhou Electric Locomotive Co., China," Sustainability, MDPI, vol. 7(1), pages 1-17, January.
    11. Stefano Menicanti & Marco di Benedetto & Davide Marinelli & Fabio Crescimbini, 2022. "Recovery of Trains’ Braking Energy in a Railway Micro-Grid Devoted to Train plus Electric Vehicle Integrated Mobility," Energies, MDPI, vol. 15(4), pages 1-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omar, Noshin & Monem, Mohamed Abdel & Firouz, Yousef & Salminen, Justin & Smekens, Jelle & Hegazy, Omar & Gaulous, Hamid & Mulder, Grietus & Van den Bossche, Peter & Coosemans, Thierry & Van Mierlo, J, 2014. "Lithium iron phosphate based battery – Assessment of the aging parameters and development of cycle life model," Applied Energy, Elsevier, vol. 113(C), pages 1575-1585.
    2. Sandra Castano-Solis & Daniel Serrano-Jimenez & Lucia Gauchia & Javier Sanz, 2017. "The Influence of BMSs on the Characterization and Modeling of Series and Parallel Li-Ion Packs," Energies, MDPI, vol. 10(3), pages 1-13, February.
    3. Berecibar, M. & Gandiaga, I. & Villarreal, I. & Omar, N. & Van Mierlo, J. & Van den Bossche, P., 2016. "Critical review of state of health estimation methods of Li-ion batteries for real applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 572-587.
    4. Hegazy, Omar & Barrero, Ricardo & Van den Bossche, Peter & El Baghdadi, Mohamed & Smekens, Jelle & Van Mierlo, Joeri & Vriens, Wouter & Bogaerts, Bruno, 2016. "Modeling, analysis and feasibility study of new drivetrain architectures for off-highway vehicles," Energy, Elsevier, vol. 109(C), pages 1056-1074.
    5. Noshin Omar & Peter Van den Bossche & Thierry Coosemans & Joeri Van Mierlo, 2013. "Peukert Revisited—Critical Appraisal and Need for Modification for Lithium-Ion Batteries," Energies, MDPI, vol. 6(11), pages 1-17, October.
    6. Shovon Goutam & Jean-Marc Timmermans & Noshin Omar & Peter Van den Bossche & Joeri Van Mierlo, 2015. "Comparative Study of Surface Temperature Behavior of Commercial Li-Ion Pouch Cells of Different Chemistries and Capacities by Infrared Thermography," Energies, MDPI, vol. 8(8), pages 1-18, August.
    7. Odile Capron & Ahmadou Samba & Noshin Omar & Peter Van Den Bossche & Joeri Van Mierlo, 2015. "Thermal Behaviour Investigation of a Large and High Power Lithium Iron Phosphate Cylindrical Cell," Energies, MDPI, vol. 8(9), pages 1-26, September.
    8. Theodoros Kalogiannis & Md Sazzad Hosen & Mohsen Akbarzadeh Sokkeh & Shovon Goutam & Joris Jaguemont & Lu Jin & Geng Qiao & Maitane Berecibar & Joeri Van Mierlo, 2019. "Comparative Study on Parameter Identification Methods for Dual-Polarization Lithium-Ion Equivalent Circuit Model," Energies, MDPI, vol. 12(21), pages 1-35, October.
    9. Noshin Omar & Mohamed Daowd & Omar Hegazy & Peter Van den Bossche & Thierry Coosemans & Joeri Van Mierlo, 2012. "Electrical Double-Layer Capacitors in Hybrid Topologies —Assessment and Evaluation of Their Performance," Energies, MDPI, vol. 5(11), pages 1-36, November.
    10. Seman, Raja Noor Amalina Raja & Azam, Mohd Asyadi & Mohamad, Ahmad Azmin, 2017. "Systematic gap analysis of carbon nanotube-based lithium-ion batteries and electrochemical capacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 644-659.
    11. Mohamed Abdel-Monem & Omar Hegazy & Noshin Omar & Khiem Trad & Sven De Breucker & Peter Van Den Bossche & Joeri Van Mierlo, 2016. "Design and Analysis of Generic Energy Management Strategy for Controlling Second-Life Battery Systems in Stationary Applications," Energies, MDPI, vol. 9(11), pages 1-25, October.
    12. Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos, 2016. "Electrical energy storage systems in electricity generation: Energy policies, innovative technologies, and regulatory regimes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1044-1067.
    13. Md. Sazal Miah & Molla Shahadat Hossain Lipu & Sheikh Tanzim Meraj & Kamrul Hasan & Shaheer Ansari & Taskin Jamal & Hasan Masrur & Rajvikram Madurai Elavarasan & Aini Hussain, 2021. "Optimized Energy Management Schemes for Electric Vehicle Applications: A Bibliometric Analysis towards Future Trends," Sustainability, MDPI, vol. 13(22), pages 1-38, November.
    14. Mohamed Daowd & Mailier Antoine & Noshin Omar & Philippe Lataire & Peter Van Den Bossche & Joeri Van Mierlo, 2014. "Battery Management System—Balancing Modularization Based on a Single Switched Capacitor and Bi-Directional DC/DC Converter with the Auxiliary Battery," Energies, MDPI, vol. 7(5), pages 1-41, April.
    15. Javier Sanfélix & Cristina De la Rúa & Jannick Hoejrup Schmidt & Maarten Messagie & Joeri Van Mierlo, 2016. "Environmental and Economic Performance of an Li-Ion Battery Pack: A Multiregional Input-Output Approach," Energies, MDPI, vol. 9(8), pages 1-15, July.
    16. Gaizka Saldaña & José Ignacio San Martín & Inmaculada Zamora & Francisco Javier Asensio & Oier Oñederra, 2019. "Analysis of the Current Electric Battery Models for Electric Vehicle Simulation," Energies, MDPI, vol. 12(14), pages 1-27, July.
    17. Nataliya N. Yazvinskaya & Nikolay E. Galushkin & Dmitriy V. Ruslyakov & Dmitriy N. Galushkin, 2021. "Generalized Peukert Equations Use for Finding the Remaining Capacity of Lithium-Ion Cells of Any Format," Energies, MDPI, vol. 14(16), pages 1-9, August.
    18. Pelletier, Samuel & Jabali, Ola & Laporte, Gilbert & Veneroni, Marco, 2017. "Battery degradation and behaviour for electric vehicles: Review and numerical analyses of several models," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 158-187.
    19. Jianping Gao & Yongzhi Zhang & Hongwen He, 2015. "A Real-Time Joint Estimator for Model Parameters and State of Charge of Lithium-Ion Batteries in Electric Vehicles," Energies, MDPI, vol. 8(8), pages 1-19, August.
    20. Firouz, Y. & Omar, N. & Timmermans, J.-M. & Van den Bossche, P. & Van Mierlo, J., 2015. "Lithium-ion capacitor – Characterization and development of new electrical model," Energy, Elsevier, vol. 83(C), pages 597-613.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:4:p:1802-1820:d:24605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.