IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i11p4533-4568d21446.html
   My bibliography  Save this article

Electrical Double-Layer Capacitors in Hybrid Topologies —Assessment and Evaluation of Their Performance

Author

Listed:
  • Noshin Omar

    (Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
    Erasmus University College, Nijverheidskaai 170, Brussels 1070, Belgium)

  • Mohamed Daowd

    (Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium)

  • Omar Hegazy

    (Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium)

  • Peter Van den Bossche

    (Erasmus University College, Nijverheidskaai 170, Brussels 1070, Belgium)

  • Thierry Coosemans

    (Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium)

  • Joeri Van Mierlo

    (Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium)

Abstract

PHEVs and BEVs make use of battery cells optimized for high energy rather than for high power. This means that the power abilities of these batteries are limited. In order to enhance their performance, a hybrid Rechargeable Energy Storage System (RESS) architecture can be used combining batteries with electrical-double layer capacitors (EDLCs). Such a hybridized architecture can be accomplished using passive or active systems. In this paper, the characteristics of these topologies have been analyzed and compared based on a newly developed hybridization simulation tool for association of lithium-ion batteries and EDLCs. The analysis shows that the beneficial impact of the EDLCs brings about enhanced battery performances in terms of energy efficiency and voltage drops, rather than extension of vehicle range. These issues have been particularly studied for the passive and active hybrid topologies. The classical passive and active topologies being expensive and less beneficial in term of cost, volume and weight, a new hybrid configuration based on the parallel combination of lithium-ion and EDLCs on cell level has been proposed in this article. This topology allows reducing cost, volume, and weight and system complexity in a significant way. Furthermore, a number of experimental setups have illustrated the power of the novel topology in terms of battery capacity increase and power capabilities during charging and discharging. Finally, a unique cycle life test campaign demonstrated that the lifetime of highly optimized lithium-ion batteries can be extended up to 30%–40%.

Suggested Citation

  • Noshin Omar & Mohamed Daowd & Omar Hegazy & Peter Van den Bossche & Thierry Coosemans & Joeri Van Mierlo, 2012. "Electrical Double-Layer Capacitors in Hybrid Topologies —Assessment and Evaluation of Their Performance," Energies, MDPI, vol. 5(11), pages 1-36, November.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:11:p:4533-4568:d:21446
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/11/4533/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/11/4533/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:cdl:itsdav:qt3mc7g3vt is not listed on IDEAS
    2. Noshin Omar & Mohamed Daowd & Peter van den Bossche & Omar Hegazy & Jelle Smekens & Thierry Coosemans & Joeri van Mierlo, 2012. "Rechargeable Energy Storage Systems for Plug-in Hybrid Electric Vehicles—Assessment of Electrical Characteristics," Energies, MDPI, vol. 5(8), pages 1-37, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kuo-Hsin Tseng & Jin-Wei Liang & Wunching Chang & Shyh-Chin Huang, 2015. "Regression Models Using Fully Discharged Voltage and Internal Resistance for State of Health Estimation of Lithium-Ion Batteries," Energies, MDPI, vol. 8(4), pages 1-19, April.
    2. Balsamo, Flavio & Capasso, Clemente & Lauria, Davide & Veneri, Ottorino, 2020. "Optimal design and energy management of hybrid storage systems for marine propulsion applications," Applied Energy, Elsevier, vol. 278(C).
    3. Omar, Noshin & Monem, Mohamed Abdel & Firouz, Yousef & Salminen, Justin & Smekens, Jelle & Hegazy, Omar & Gaulous, Hamid & Mulder, Grietus & Van den Bossche, Peter & Coosemans, Thierry & Van Mierlo, J, 2014. "Lithium iron phosphate based battery – Assessment of the aging parameters and development of cycle life model," Applied Energy, Elsevier, vol. 113(C), pages 1575-1585.
    4. Yun Zhang & Jilong Shi & Chuanzhi Fu & Wei Zhang & Ping Wang & Jing Li & Mark Sumner, 2018. "An Enhanced Hybrid Switching-Frequency Modulation Strategy for Fuel Cell Vehicle Three-Level DC-DC Converters with Quasi-Z Source," Energies, MDPI, vol. 11(5), pages 1-16, April.
    5. Cong Zhang & Haitao Min & Yuanbin Yu & Dai Wang & Justin Luke & Daniel Opila & Samveg Saxena, 2016. "Using CPE Function to Size Capacitor Storage for Electric Vehicles and Quantifying Battery Degradation during Different Driving Cycles," Energies, MDPI, vol. 9(11), pages 1-23, November.
    6. Qiao Zhang & Weiwen Deng, 2016. "An Adaptive Energy Management System for Electric Vehicles Based on Driving Cycle Identification and Wavelet Transform," Energies, MDPI, vol. 9(5), pages 1-24, May.
    7. Tran Thai Trung & Seon-Ju Ahn & Joon-Ho Choi & Seok-Il Go & Soon-Ryul Nam, 2014. "Real-Time Wavelet-Based Coordinated Control of Hybrid Energy Storage Systems for Denoising and Flattening Wind Power Output," Energies, MDPI, vol. 7(10), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omar, Noshin & Monem, Mohamed Abdel & Firouz, Yousef & Salminen, Justin & Smekens, Jelle & Hegazy, Omar & Gaulous, Hamid & Mulder, Grietus & Van den Bossche, Peter & Coosemans, Thierry & Van Mierlo, J, 2014. "Lithium iron phosphate based battery – Assessment of the aging parameters and development of cycle life model," Applied Energy, Elsevier, vol. 113(C), pages 1575-1585.
    2. Sandra Castano-Solis & Daniel Serrano-Jimenez & Lucia Gauchia & Javier Sanz, 2017. "The Influence of BMSs on the Characterization and Modeling of Series and Parallel Li-Ion Packs," Energies, MDPI, vol. 10(3), pages 1-13, February.
    3. Berecibar, M. & Gandiaga, I. & Villarreal, I. & Omar, N. & Van Mierlo, J. & Van den Bossche, P., 2016. "Critical review of state of health estimation methods of Li-ion batteries for real applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 572-587.
    4. Hegazy, Omar & Barrero, Ricardo & Van den Bossche, Peter & El Baghdadi, Mohamed & Smekens, Jelle & Van Mierlo, Joeri & Vriens, Wouter & Bogaerts, Bruno, 2016. "Modeling, analysis and feasibility study of new drivetrain architectures for off-highway vehicles," Energy, Elsevier, vol. 109(C), pages 1056-1074.
    5. Noshin Omar & Peter Van den Bossche & Thierry Coosemans & Joeri Van Mierlo, 2013. "Peukert Revisited—Critical Appraisal and Need for Modification for Lithium-Ion Batteries," Energies, MDPI, vol. 6(11), pages 1-17, October.
    6. Shovon Goutam & Jean-Marc Timmermans & Noshin Omar & Peter Van den Bossche & Joeri Van Mierlo, 2015. "Comparative Study of Surface Temperature Behavior of Commercial Li-Ion Pouch Cells of Different Chemistries and Capacities by Infrared Thermography," Energies, MDPI, vol. 8(8), pages 1-18, August.
    7. Odile Capron & Ahmadou Samba & Noshin Omar & Peter Van Den Bossche & Joeri Van Mierlo, 2015. "Thermal Behaviour Investigation of a Large and High Power Lithium Iron Phosphate Cylindrical Cell," Energies, MDPI, vol. 8(9), pages 1-26, September.
    8. Theodoros Kalogiannis & Md Sazzad Hosen & Mohsen Akbarzadeh Sokkeh & Shovon Goutam & Joris Jaguemont & Lu Jin & Geng Qiao & Maitane Berecibar & Joeri Van Mierlo, 2019. "Comparative Study on Parameter Identification Methods for Dual-Polarization Lithium-Ion Equivalent Circuit Model," Energies, MDPI, vol. 12(21), pages 1-35, October.
    9. Seman, Raja Noor Amalina Raja & Azam, Mohd Asyadi & Mohamad, Ahmad Azmin, 2017. "Systematic gap analysis of carbon nanotube-based lithium-ion batteries and electrochemical capacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 644-659.
    10. Mohamed Abdel-Monem & Omar Hegazy & Noshin Omar & Khiem Trad & Sven De Breucker & Peter Van Den Bossche & Joeri Van Mierlo, 2016. "Design and Analysis of Generic Energy Management Strategy for Controlling Second-Life Battery Systems in Stationary Applications," Energies, MDPI, vol. 9(11), pages 1-25, October.
    11. Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos, 2016. "Electrical energy storage systems in electricity generation: Energy policies, innovative technologies, and regulatory regimes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1044-1067.
    12. Md. Sazal Miah & Molla Shahadat Hossain Lipu & Sheikh Tanzim Meraj & Kamrul Hasan & Shaheer Ansari & Taskin Jamal & Hasan Masrur & Rajvikram Madurai Elavarasan & Aini Hussain, 2021. "Optimized Energy Management Schemes for Electric Vehicle Applications: A Bibliometric Analysis towards Future Trends," Sustainability, MDPI, vol. 13(22), pages 1-38, November.
    13. Mohamed Daowd & Mailier Antoine & Noshin Omar & Philippe Lataire & Peter Van Den Bossche & Joeri Van Mierlo, 2014. "Battery Management System—Balancing Modularization Based on a Single Switched Capacitor and Bi-Directional DC/DC Converter with the Auxiliary Battery," Energies, MDPI, vol. 7(5), pages 1-41, April.
    14. Javier Sanfélix & Cristina De la Rúa & Jannick Hoejrup Schmidt & Maarten Messagie & Joeri Van Mierlo, 2016. "Environmental and Economic Performance of an Li-Ion Battery Pack: A Multiregional Input-Output Approach," Energies, MDPI, vol. 9(8), pages 1-15, July.
    15. Gaizka Saldaña & José Ignacio San Martín & Inmaculada Zamora & Francisco Javier Asensio & Oier Oñederra, 2019. "Analysis of the Current Electric Battery Models for Electric Vehicle Simulation," Energies, MDPI, vol. 12(14), pages 1-27, July.
    16. Nataliya N. Yazvinskaya & Nikolay E. Galushkin & Dmitriy V. Ruslyakov & Dmitriy N. Galushkin, 2021. "Generalized Peukert Equations Use for Finding the Remaining Capacity of Lithium-Ion Cells of Any Format," Energies, MDPI, vol. 14(16), pages 1-9, August.
    17. Pelletier, Samuel & Jabali, Ola & Laporte, Gilbert & Veneroni, Marco, 2017. "Battery degradation and behaviour for electric vehicles: Review and numerical analyses of several models," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 158-187.
    18. Jianping Gao & Yongzhi Zhang & Hongwen He, 2015. "A Real-Time Joint Estimator for Model Parameters and State of Charge of Lithium-Ion Batteries in Electric Vehicles," Energies, MDPI, vol. 8(8), pages 1-19, August.
    19. Firouz, Y. & Omar, N. & Timmermans, J.-M. & Van den Bossche, P. & Van Mierlo, J., 2015. "Lithium-ion capacitor – Characterization and development of new electrical model," Energy, Elsevier, vol. 83(C), pages 597-613.
    20. Klaus Lieutenant & Ana Vassileva Borissova & Mohamad Mustafa & Nick McCarthy & Ioan Iordache, 2022. "Comparison of “Zero Emission” Vehicles with Petrol and Hybrid Cars in Terms of Total CO 2 Release—A Case Study for Romania, Poland, Norway and Germany," Energies, MDPI, vol. 15(21), pages 1-13, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:11:p:4533-4568:d:21446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.