IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i10p3948-3971d20674.html
   My bibliography  Save this article

Forecasting Annual Power Generation Using a Harmony Search Algorithm-Based Joint Parameters Optimization Combination Model

Author

Listed:
  • Wei Sun

    (School of Economics and Management, North China Electric Power University, Baoding 071003, Hebei, China)

  • Jingmin Wang

    (School of Economics and Management, North China Electric Power University, Baoding 071003, Hebei, China)

  • Hong Chang

    (Key Laboratory of Advanced Control and Optimization for Chemical Processes, East China University of Science and Technology, Ministry of Education, Shanghai 200237, China)

Abstract

Accurate power generation forecasting provides the basis of decision making for electric power industry development plans, energy conservation and environmental protection. Since the power generation time series are rarely purely linear or nonlinear, no single forecasting model can identify the true data trends exactly in all situations. To combine forecasts from different models can reduce the model selection risk and effectively improve accuracy. In this paper, we propose a novel technique called the Harmony Search (HS) algorithm-based joint parameters optimization combination model. In this model, the single forecasting model adopts power function form with unfixed exponential parameters. The exponential parameters of the single model and the combination weights are called joint parameters which are optimized by the HS algorithm by optimizing the objective function. Real power generation time series data sets of China, Japan, Russian Federation and India were used as samples to examine the forecasting accuracy of the presented model. The forecasting performance was compared with four single models and four combination models, respectively. The MAPE of our presented model is the lowest, which shows that the proposed model outperforms other comparative ones. Especially, the proposed combination model could better fit significant turning points of power generation time series. We can conclude that the proposed model can obviously improve forecasting accuracy and it can treat nonlinear time series with fluctuations better than other single models or combination models.

Suggested Citation

  • Wei Sun & Jingmin Wang & Hong Chang, 2012. "Forecasting Annual Power Generation Using a Harmony Search Algorithm-Based Joint Parameters Optimization Combination Model," Energies, MDPI, vol. 5(10), pages 1-24, October.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:10:p:3948-3971:d:20674
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/10/3948/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/10/3948/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dong, C. & Huang, G.H. & Cai, Y.P. & Xu, Y., 2011. "An interval-parameter minimax regret programming approach for power management systems planning under uncertainty," Applied Energy, Elsevier, vol. 88(8), pages 2835-2845, August.
    2. Ming Meng & Dongxiao Niu & Wei Sun, 2011. "Forecasting Monthly Electric Energy Consumption Using Feature Extraction," Energies, MDPI, vol. 4(10), pages 1-13, September.
    3. Carolin Mabel, M. & Fernandez, E., 2008. "Analysis of wind power generation and prediction using ANN: A case study," Renewable Energy, Elsevier, vol. 33(5), pages 986-992.
    4. Wang, Jianjun & Li, Li & Niu, Dongxiao & Tan, Zhongfu, 2012. "An annual load forecasting model based on support vector regression with differential evolution algorithm," Applied Energy, Elsevier, vol. 94(C), pages 65-70.
    5. Köne, Aylin Çigdem & Büke, Tayfun, 2010. "Forecasting of CO2 emissions from fuel combustion using trend analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2906-2915, December.
    6. Fesanghary, M. & Ardehali, M.M., 2009. "A novel meta-heuristic optimization methodology for solving various types of economic dispatch problem," Energy, Elsevier, vol. 34(6), pages 757-766.
    7. Hibon, Michele & Evgeniou, Theodoros, 2005. "To combine or not to combine: selecting among forecasts and their combinations," International Journal of Forecasting, Elsevier, vol. 21(1), pages 15-24.
    8. Li, Li & Tan, Zhongfu & Wang, Jianhui & Xu, Jun & Cai, Chengkai & Hou, Yong, 2011. "Energy conservation and emission reduction policies for the electric power industry in China," Energy Policy, Elsevier, vol. 39(6), pages 3669-3679, June.
    9. Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio, 2009. "Electricity consumption forecasting in Italy using linear regression models," Energy, Elsevier, vol. 34(9), pages 1413-1421.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong Chang & Wei Sun & Xingsheng Gu, 2013. "Forecasting Energy CO 2 Emissions Using a Quantum Harmony Search Algorithm-Based DMSFE Combination Model," Energies, MDPI, vol. 6(3), pages 1-22, March.
    2. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    3. Wang, Xingwei & Cai, Yanpeng & Chen, Jiajun & Dai, Chao, 2013. "A grey-forecasting interval-parameter mixed-integer programming approach for integrated electric-environmental management–A case study of Beijing," Energy, Elsevier, vol. 63(C), pages 334-344.
    4. Meng, Ming & Niu, Dongxiao & Shang, Wei, 2014. "A small-sample hybrid model for forecasting energy-related CO2 emissions," Energy, Elsevier, vol. 64(C), pages 673-677.
    5. Di Leo, Senatro & Caramuta, Pietro & Curci, Paola & Cosmi, Carmelina, 2020. "Regression analysis for energy demand projection: An application to TIMES-Basilicata and TIMES-Italy energy models," Energy, Elsevier, vol. 196(C).
    6. Zeng, Yu-Rong & Zeng, Yi & Choi, Beomjin & Wang, Lin, 2017. "Multifactor-influenced energy consumption forecasting using enhanced back-propagation neural network," Energy, Elsevier, vol. 127(C), pages 381-396.
    7. Peng Jiang & Jun Dong & Hui Huang, 2019. "Forecasting China’s Renewable Energy Terminal Power Consumption Based on Empirical Mode Decomposition and an Improved Extreme Learning Machine Optimized by a Bacterial Foraging Algorithm," Energies, MDPI, vol. 12(7), pages 1-24, April.
    8. Shen, Meng & Lu, Yujie & Wei, Kua Harn & Cui, Qingbin, 2020. "Prediction of household electricity consumption and effectiveness of concerted intervention strategies based on occupant behaviour and personality traits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    9. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    10. Angelopoulos, Dimitrios & Siskos, Yannis & Psarras, John, 2019. "Disaggregating time series on multiple criteria for robust forecasting: The case of long-term electricity demand in Greece," European Journal of Operational Research, Elsevier, vol. 275(1), pages 252-265.
    11. Hu, Junjie & López Cabrera, Brenda & Melzer, Awdesch, 2021. "Advanced statistical learning on short term load process forecasting," IRTG 1792 Discussion Papers 2021-020, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    12. Song, Rui & Feng, Xiaoyu & Wang, Yao & Sun, Shuyu & Liu, Jianjun, 2021. "Dissociation and transport modeling of methane hydrate in core-scale sandy sediments: A comparative study," Energy, Elsevier, vol. 221(C).
    13. Bartosz Uniejewski & Katarzyna Maciejowska, 2022. "LASSO Principal Component Averaging -- a fully automated approach for point forecast pooling," Papers 2207.04794, arXiv.org.
    14. Xiao, Liye & Shao, Wei & Liang, Tulu & Wang, Chen, 2016. "A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting," Applied Energy, Elsevier, vol. 167(C), pages 135-153.
    15. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    16. Qian, Yuan & Scherer, Laura & Tukker, Arnold & Behrens, Paul, 2020. "China's potential SO2 emissions from coal by 2050," Energy Policy, Elsevier, vol. 147(C).
    17. A. Azadeh & M. Saberi & A. Gitiforouz, 2013. "An integrated fuzzy mathematical model and principal component analysis algorithm for forecasting uncertain trends of electricity consumption," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(4), pages 2163-2176, June.
    18. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    19. Simon Pezzutto & Gianluca Grilli & Stefano Zambotti & Stefan Dunjic, 2018. "Forecasting Electricity Market Price for End Users in EU28 until 2020—Main Factors of Influence," Energies, MDPI, vol. 11(6), pages 1-18, June.
    20. Hu, Jianming & Wang, Jianzhou & Zeng, Guowei, 2013. "A hybrid forecasting approach applied to wind speed time series," Renewable Energy, Elsevier, vol. 60(C), pages 185-194.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:10:p:3948-3971:d:20674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.