IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i9p2329-d1648433.html
   My bibliography  Save this article

Modeling Ecological Risk in Bottom Sediments Using Predictive Data Analytics: Implications for Energy Systems

Author

Listed:
  • Bartosz Przysucha

    (Faculty of Management, Lublin University of Technology, 20-618 Lublin, Poland)

  • Monika Kulisz

    (Faculty of Management, Lublin University of Technology, 20-618 Lublin, Poland)

  • Justyna Kujawska

    (Faculty of Environmental Engineering, Lublin University of Technology, 20-618 Lublin, Poland)

  • Michał Cioch

    (Faculty of Management, Lublin University of Technology, 20-618 Lublin, Poland)

  • Adam Gawryluk

    (Faculty of Agrobioengineering, University of Life Sciences in Lublin, 20-950 Lublin, Poland)

  • Rafał Garbacz

    (Faculty of Management, Lublin University of Technology, 20-618 Lublin, Poland)

Abstract

Sediment accumulation in dam reservoirs significantly impacts hydropower efficiency and infrastructure sustainability. Bottom sediments often contain heavy metals such as Cr, Ni, Cu, Zn, Cd, and Pb, which can pose ecological risks and affect water quality. Moreover, excessive sedimentation reduces reservoir capacity, increases turbine wear, and raises operational costs, ultimately hindering energy production. This study examined the ecological risk of heavy metals in bottom sediments and explored predictive approaches to support sediment management. Using 27 sediment samples from Zemborzyce Lake, the concentrations of selected heavy metals were measured at two depths (5 cm and 30 cm). Ecological risk index (ERI) values for the deep layer were predicted based on surface data using artificial neural networks (ANNs) and multiple linear regression (MLR). Both models showed a high predictive accuracy, demonstrating the potential of data-driven methods in sediment quality assessment. The early identification of high-risk areas allows for targeted dredging and optimized maintenance planning, minimizing disruption to dam operations. Integrating predictive analytics into hydropower management enhances system resilience, environmental protection, and long-term energy efficiency.

Suggested Citation

  • Bartosz Przysucha & Monika Kulisz & Justyna Kujawska & Michał Cioch & Adam Gawryluk & Rafał Garbacz, 2025. "Modeling Ecological Risk in Bottom Sediments Using Predictive Data Analytics: Implications for Energy Systems," Energies, MDPI, vol. 18(9), pages 1-23, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2329-:d:1648433
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/9/2329/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/9/2329/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Sungil & Kim, Heeyoung, 2016. "A new metric of absolute percentage error for intermittent demand forecasts," International Journal of Forecasting, Elsevier, vol. 32(3), pages 669-679.
    2. Marcin Sidoruk, 2023. "Pollution and Potential Ecological Risk Evaluation of Heavy Metals in the Bottom Sediments: A Case Study of Eutrophic Bukwałd Lake Located in an Agricultural Catchment," IJERPH, MDPI, vol. 20(3), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Xincheng & Banks, Jonathan & Wu, Linping & Liu, Wei Victor, 2020. "Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta," Renewable Energy, Elsevier, vol. 148(C), pages 1110-1123.
    2. Li, Chen & Kies, Alexander & Zhou, Kai & Schlott, Markus & Sayed, Omar El & Bilousova, Mariia & Stöcker, Horst, 2024. "Optimal Power Flow in a highly renewable power system based on attention neural networks," Applied Energy, Elsevier, vol. 359(C).
    3. Philippe St-Aubin & Bruno Agard, 2022. "Precision and Reliability of Forecasts Performance Metrics," Forecasting, MDPI, vol. 4(4), pages 1-22, October.
    4. Arash YoosefDoost & William David Lubitz, 2021. "Archimedes Screw Design: An Analytical Model for Rapid Estimation of Archimedes Screw Geometry," Energies, MDPI, vol. 14(22), pages 1-14, November.
    5. Khan, Waqas & Somers, Ward & Walker, Shalika & de Bont, Kevin & Van der Velden, Joep & Zeiler, Wim, 2023. "Comparison of electric vehicle load forecasting across different spatial levels with incorporated uncertainty estimation," Energy, Elsevier, vol. 283(C).
    6. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2022. "Utilizing geothermal energy from enhanced geothermal systems as a heat source for oil sands separation: A numerical evaluation," Energy, Elsevier, vol. 238(PA).
    7. Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    8. Jorge V Pérez-Rodríguez & Juan M Hernández & Julián Andrada-Félix, 2024. "Modelling prices and volatilities in the sharing economy," Tourism Economics, , vol. 30(5), pages 1189-1215, August.
    9. Karol Pilot & Alicja Ganczarek-Gamrot & Krzysztof Kania, 2024. "Dealing with Anomalies in Day-Ahead Market Prediction Using Machine Learning Hybrid Model," Energies, MDPI, vol. 17(17), pages 1-20, September.
    10. Nghia Chu & Binh Dao & Nga Pham & Huy Nguyen & Hien Tran, 2022. "Predicting Mutual Funds' Performance using Deep Learning and Ensemble Techniques," Papers 2209.09649, arXiv.org, revised Jul 2023.
    11. Yang, Cheng-Hu & Wang, Hai-Tang & Ma, Xin & Talluri, Srinivas, 2023. "A data-driven newsvendor problem: A high-dimensional and mixed-frequency method," International Journal of Production Economics, Elsevier, vol. 266(C).
    12. Andrea Petroselli & Jacek Florek & Dariusz Młyński & Leszek Książek & Andrzej Wałęga, 2020. "New Insights on Flood Mapping Procedure: Two Case Studies in Poland," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    13. Jose Manuel Barrera & Alejandro Reina & Alejandro Maté & Juan Carlos Trujillo, 2020. "Solar Energy Prediction Model Based on Artificial Neural Networks and Open Data," Sustainability, MDPI, vol. 12(17), pages 1-20, August.
    14. Corey Ducharme & Bruno Agard & Martin Trépanier, 2024. "Improving demand forecasting for customers with missing downstream data in intermittent demand supply chains with supervised multivariate clustering," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1661-1681, August.
    15. Bhatia, Kushagra & Mittal, Rajat & Varanasi, Jyothi & Tripathi, M.M., 2021. "An ensemble approach for electricity price forecasting in markets with renewable energy resources," Utilities Policy, Elsevier, vol. 70(C).
    16. Anh Ngoc-Lan Huynh & Ravinesh C. Deo & Duc-Anh An-Vo & Mumtaz Ali & Nawin Raj & Shahab Abdulla, 2020. "Near Real-Time Global Solar Radiation Forecasting at Multiple Time-Step Horizons Using the Long Short-Term Memory Network," Energies, MDPI, vol. 13(14), pages 1-30, July.
    17. Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).
    18. Ahmed Gowida & Tamer Moussa & Salaheldin Elkatatny & Abdulwahab Ali, 2019. "A Hybrid Artificial Intelligence Model to Predict the Elastic Behavior of Sandstone Rocks," Sustainability, MDPI, vol. 11(19), pages 1-22, September.
    19. Indy Man Kit Ho & Anthony Weldon & Jason Tze Ho Yong & Candy Tze Tim Lam & Jaime Sampaio, 2023. "Using Machine Learning Algorithms to Pool Data from Meta-Analysis for the Prediction of Countermovement Jump Improvement," IJERPH, MDPI, vol. 20(10), pages 1-15, May.
    20. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2329-:d:1648433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.