IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i9p2190-d1642123.html
   My bibliography  Save this article

Global Solutions for Sustainable Heating, Ventilation, Air Conditioning, and Refrigeration Systems and Their Suitability to the New Zealand Market

Author

Listed:
  • Nicholas Andrew Harvey

    (School of Built Environment, Massey University, Auckland 0632, New Zealand)

  • Eziaku Onyeizu Rasheed

    (School of Built Environment, Massey University, Auckland 0632, New Zealand)

Abstract

This paper attempts to find alternative ways in which heating, ventilation, air conditioning and refrigeration systems can be made more energy efficient and sustainable at a global level. Eight technologies or solutions that either passively or supplementarily reduce the heating or cooling load required by a structure are detailed. These technologies or solutions were then presented to heating, ventilation, air conditioning and refrigeration industry professionals in New Zealand to determine their viability and further establish market readiness towards integrating new, innovative, and sustainable solutions in New Zealand. A literature review was conducted to establish the performance of the selected solutions and understand their operational principles and the efficiency they provided. Qualitative research and data collected via semi-structured interviews provided the data for assessing the viability of the selected technologies in the New Zealand market. Following a thematic and hybrid-thematic analysis of the data, the technologies were ranked, and suggestions were made to help improve innovation and energy efficiency in the heating, ventilation, air conditioning, and refrigeration industry in New Zealand. Of the technologies selected, airtightness, heat recovery ventilation retrofits, materials and design principles, and photovoltaic hot water heating were identified as the most viable. The New Zealand market was deemed not to be in a good position to adopt new or alternative solutions. The main issues affecting New Zealand’s market readiness to assimilate innovative and energy-efficient solutions are a lack of new technologies, poor standards of education throughout the industry, a lack of regulation, and a lack of government incentives.

Suggested Citation

  • Nicholas Andrew Harvey & Eziaku Onyeizu Rasheed, 2025. "Global Solutions for Sustainable Heating, Ventilation, Air Conditioning, and Refrigeration Systems and Their Suitability to the New Zealand Market," Energies, MDPI, vol. 18(9), pages 1-23, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2190-:d:1642123
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/9/2190/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/9/2190/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gluesenkamp, Kyle R. & Chugh, Devesh & Abdelaziz, Omar & Moghaddam, Saeed, 2017. "Efficiency analysis of semi-open sorption heat pump systems," Renewable Energy, Elsevier, vol. 110(C), pages 95-104.
    2. Somogyi, Viola & Sebestyén, Viktor & Domokos, Endre, 2018. "Assessment of wastewater heat potential for district heating in Hungary," Energy, Elsevier, vol. 163(C), pages 712-721.
    3. Self, Stuart J. & Reddy, Bale V. & Rosen, Marc A., 2013. "Geothermal heat pump systems: Status review and comparison with other heating options," Applied Energy, Elsevier, vol. 101(C), pages 341-348.
    4. Monghasemi, Nima & Vadiee, Amir, 2018. "A review of solar chimney integrated systems for space heating and cooling application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2714-2730.
    5. Tarnawski, V.R. & Leong, W.H. & Momose, T. & Hamada, Y., 2009. "Analysis of ground source heat pumps with horizontal ground heat exchangers for northern Japan," Renewable Energy, Elsevier, vol. 34(1), pages 127-134.
    6. Gao, Jun & Zhang, Xu & Liu, Jun & Li, Kuishan & Yang, Jie, 2008. "Numerical and experimental assessment of thermal performance of vertical energy piles: An application," Applied Energy, Elsevier, vol. 85(10), pages 901-910, October.
    7. Simões, N. & Manaia, M. & Simões, I., 2021. "Energy performance of solar and Trombe walls in Mediterranean climates," Energy, Elsevier, vol. 234(C).
    8. Bienvenido-Huertas, David & Sánchez-García, Daniel & Rubio-Bellido, Carlos, 2020. "Analysing natural ventilation to reduce the cooling energy consumption and the fuel poverty of social dwellings in coastal zones," Applied Energy, Elsevier, vol. 279(C).
    9. Singh, Ramkishore & Sawhney, R.L. & Lazarus, I.J. & Kishore, V.V.N., 2018. "Recent advancements in earth air tunnel heat exchanger (EATHE) system for indoor thermal comfort application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2162-2185.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    2. de Moel, Monique & Bach, Peter M. & Bouazza, Abdelmalek & Singh, Rao M. & Sun, JingLiang O., 2010. "Technological advances and applications of geothermal energy pile foundations and their feasibility in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2683-2696, December.
    3. Weidong Lyu & Hefu Pu & Jiannan (Nick) Chen, 2020. "Thermal Performance of an Energy Pile Group with a Deeply Penetrating U-Shaped Heat Exchanger," Energies, MDPI, vol. 13(21), pages 1-17, November.
    4. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    5. Charlesworth, S.M. & Faraj-Llyod, A.S. & Coupe, S.J., 2017. "Renewable energy combined with sustainable drainage: Ground source heat and pervious paving," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 912-919.
    6. Zhang, Haihua & Tao, Yao & Zhang, Guomin & Li, Jie & Setunge, Sujeeva & Shi, Long, 2022. "Impacts of storey number of buildings on solar chimney performance: A theoretical and numerical approach," Energy, Elsevier, vol. 261(PA).
    7. Han, Chanjuan & Yu, Xiong (Bill), 2016. "Performance of a residential ground source heat pump system in sedimentary rock formation," Applied Energy, Elsevier, vol. 164(C), pages 89-98.
    8. Yu Zhou & Asal Bidarmaghz & Nikolas Makasis & Guillermo Narsilio, 2021. "Ground-Source Heat Pump Systems: The Effects of Variable Trench Separations and Pipe Configurations in Horizontal Ground Heat Exchangers," Energies, MDPI, vol. 14(13), pages 1-15, June.
    9. Cherati, Davood Yazdani & Ghasemi-Fare, Omid, 2021. "Practical approaches for implementation of energy piles in Iran based on the lessons learned from the developed countries experiences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    10. Rokas Valancius & Rao Martand Singh & Andrius Jurelionis & Juozas Vaiciunas, 2019. "A Review of Heat Pump Systems and Applications in Cold Climates: Evidence from Lithuania," Energies, MDPI, vol. 12(22), pages 1-18, November.
    11. Sani, Abubakar Kawuwa & Singh, Rao Martand & Amis, Tony & Cavarretta, Ignazio, 2019. "A review on the performance of geothermal energy pile foundation, its design process and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 54-78.
    12. Tao, Yao & Huang, Hua & Fang, Xiang & Yan, Yihuan & Tu, Jiyuan & Shi, Long, 2024. "Solar radiation on naturally ventilated double skin facade in real climates: The impact of solar incidence angle," Renewable Energy, Elsevier, vol. 232(C).
    13. Cui, Yuanlong & Zhu, Jie & Twaha, Ssennoga & Riffat, Saffa, 2018. "A comprehensive review on 2D and 3D models of vertical ground heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 84-114.
    14. Wenxiao Chu & Maria Vicidomini & Francesco Calise & Neven Duić & Poul Alborg Østergaard & Qiuwang Wang & Maria da Graça Carvalho, 2022. "Recent Advances in Low-Carbon and Sustainable, Efficient Technology: Strategies and Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
    15. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    16. Lili Tan & James A. Love, 2013. "A Literature Review on Heating of Ventilation Air with Large Diameter Earth Tubes in Cold Climates," Energies, MDPI, vol. 6(8), pages 1-10, July.
    17. Deng, Zhenpeng & Nian, Yongle & Cheng, Wen-long, 2023. "Estimation method of layered ground thermal conductivity for U-tube BHE based on the quasi-3D model," Renewable Energy, Elsevier, vol. 213(C), pages 121-133.
    18. Ma, Qijie & Wang, Peijun, 2020. "Underground solar energy storage via energy piles," Applied Energy, Elsevier, vol. 261(C).
    19. Bojić, Milorad & Cvetković, Dragan & Bojić, Ljubiša, 2015. "Decreasing energy use and influence to environment by radiant panel heating using different energy sources," Applied Energy, Elsevier, vol. 138(C), pages 404-413.
    20. Zhou, Yang & Wang, Jinyun & Li, Chong & Kong, Gangqiang & Li, Renrong, 2024. "Thermal interference process between two energy piles in 2D model using transparent soil," Energy, Elsevier, vol. 308(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2190-:d:1642123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.