Hydrothermal Liquefaction for Biofuel Synthesis: Assessment of VFA (Volatile Fatty Acid) and FAME (Fatty Acid Methyl Ester) Profiles from Spent Coffee Grounds
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Liu, Huan & Basar, Ibrahim Alper & Eskicioglu, Cigdem, 2023. "Hydrothermal liquefaction for sludge-to-energy conversion: An evaluation of biocrude production and management of waste streams," Energy, Elsevier, vol. 281(C).
- Joshua O. Ighalo & Florence C. Akaeme & Jordana Georgin & Jivago Schumacher de Oliveira & Dison S. P. Franco, 2025. "Biomass Hydrochar: A Critical Review of Process Chemistry, Synthesis Methodology, and Applications," Sustainability, MDPI, vol. 17(4), pages 1-44, February.
- Afolabi, Oluwasola O.D. & Sohail, M. & Cheng, Yu-Ling, 2020. "Optimisation and characterisation of hydrochar production from spent coffee grounds by hydrothermal carbonisation," Renewable Energy, Elsevier, vol. 147(P1), pages 1380-1391.
- Kang, Sae Byul & Oh, Hong Young & Kim, Jong Jin & Choi, Kyu Sung, 2017. "Characteristics of spent coffee ground as a fuel and combustion test in a small boiler (6.5 kW)," Renewable Energy, Elsevier, vol. 113(C), pages 1208-1214.
- Md Tahmid Islam & Al Ibtida Sultana & Cadianne Chambers & Swarna Saha & Nepu Saha & Kawnish Kirtania & M. Toufiq Reza, 2022. "Recent Progress on Emerging Applications of Hydrochar," Energies, MDPI, vol. 15(24), pages 1-45, December.
- Yulin Hu & Rhea Gallant & Shakirudeen Salaudeen & Aitazaz A. Farooque & Sophia He, 2022. "Hydrothermal Carbonization of Spent Coffee Grounds for Producing Solid Fuel," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Marcin Sajdak & Roksana Muzyka & Grzegorz Gałko & Ewelina Ksepko & Monika Zajemska & Szymon Sobek & Dariusz Tercki, 2022. "Actual Trends in the Usability of Biochar as a High-Value Product of Biomass Obtained through Pyrolysis," Energies, MDPI, vol. 16(1), pages 1-30, December.
- Diana L. Tinoco Caicedo & Myrian Santos Torres & Medelyne Mero-Benavides & Oscar Patiño Lopez & Alexis Lozano Medina & Ana M. Blanco Marigorta, 2023. "Simulation and Exergoeconomic Analysis of a Trigeneration System Based on Biofuels from Spent Coffee Grounds," Energies, MDPI, vol. 16(4), pages 1-17, February.
- Hao Chen & Fangfang Lou & Xueyi Zhang & Chengjun Shen & Weicheng Pan & Shuang Wang, 2023. "Hydrothermal Conversion of Microalgae Slurry in a Continuous Solar Collector with Static Mixer for Heat Transfer Enhancement," Energies, MDPI, vol. 16(24), pages 1-16, December.
- Radovan Nosek & Maw Maw Tun & Dagmar Juchelkova, 2020. "Energy Utilization of Spent Coffee Grounds in the Form of Pellets," Energies, MDPI, vol. 13(5), pages 1-8, March.
- Sooraj Kumar & Suhail Ahmed Soomro & Khanji Harijan & Mohammad Aslam Uqaili & Laveet Kumar, 2023. "Advancements of Biochar-Based Catalyst for Improved Production of Biodiesel: A Comprehensive Review," Energies, MDPI, vol. 16(2), pages 1-20, January.
- Śliz, Maciej & Wilk, Małgorzata, 2020. "A comprehensive investigation of hydrothermal carbonization: Energy potential of hydrochar derived from Virginia mallow," Renewable Energy, Elsevier, vol. 156(C), pages 942-950.
- Jiseok Hong & Changwon Chae & Hyunjoong Kim & Hyeokjun Kwon & Jisu Kim & Ijung Kim, 2023. "Investigation to Enhance Solid Fuel Quality in Torrefaction of Cow Manure," Energies, MDPI, vol. 16(11), pages 1-13, June.
- Pietro Romano & Nicola Stampone & Gabriele Di Giacomo, 2023. "Evolution and Prospects of Hydrothermal Carbonization," Energies, MDPI, vol. 16(7), pages 1-11, March.
- Leslie Lara-Ramos & Ana Cervera-Mata & Jesús Fernández-Bayo & Miguel Navarro-Alarcón & Gabriel Delgado & Alejandro Fernández-Arteaga, 2023. "Hydrochars Derived from Spent Coffee Grounds as Zn Bio-Chelates for Agronomic Biofortification," Sustainability, MDPI, vol. 15(13), pages 1-13, July.
- Klüpfel, Christian & Yuan, Bomin & Biller, Patrick & Herklotz, Benjamin, 2025. "Hydrothermal liquefaction as a treatment technology for anaerobic digestate: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
- Rhea Gallant & Aitazaz A. Farooque & Sophia He & Kang Kang & Yulin Hu, 2022. "A Mini-Review: Biowaste-Derived Fuel Pellet by Hydrothermal Carbonization Followed by Pelletizing," Sustainability, MDPI, vol. 14(19), pages 1-18, October.
- Anna Brunerová & Hynek Roubík & Milan Brožek & Agus Haryanto & Udin Hasanudin & Dewi Agustina Iryani & David Herák, 2019. "Valorization of Bio-Briquette Fuel by Using Spent Coffee Ground as an External Additive," Energies, MDPI, vol. 13(1), pages 1-15, December.
- A. E. Atabani & Eyas Mahmoud & Muhammed Aslam & Salman Raza Naqvi & Dagmar Juchelková & Shashi Kant Bhatia & Irfan Anjum Badruddin & T. M. Yunus Khan & Anh Tuan Hoang & Petr Palacky, 2023. "Emerging potential of spent coffee ground valorization for fuel pellet production in a biorefinery," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 7585-7623, August.
- Lasek, Janusz A. & Matuszek, Katarzyna & Hrycko, Piotr & Głód, Krzysztof & Li, Yueh-Heng, 2023. "The combustion of torrefied biomass in commercial-scale domestic boilers," Renewable Energy, Elsevier, vol. 216(C).
- Joanna Mikusińska & Monika Kuźnia & Klaudia Czerwińska & Małgorzata Wilk, 2023. "Hydrothermal Carbonization of Digestate Produced in the Biogas Production Process," Energies, MDPI, vol. 16(14), pages 1-18, July.
- Marco Balsamo & Francesca Di Lauro & Maria Laura Alfieri & Paola Manini & Piero Salatino & Fabio Montagnaro & Roberto Solimene, 2024. "Unravelling the Role of Biochemical Compounds within the Hydrothermal Liquefaction Process of Real Sludge Mixtures," Sustainability, MDPI, vol. 16(5), pages 1-18, February.
- Chen, Ying-Chu & Jhou, Sih-Yu, 2020. "Integrating spent coffee grounds and silver skin as biofuels using torrefaction," Renewable Energy, Elsevier, vol. 148(C), pages 275-283.
- Jung Eun Park & Gi Bbum Lee & Cheol Jin Jeong & Ho Kim & Choong Gon Kim, 2021. "Determination of Relationship between Higher Heating Value and Atomic Ratio of Hydrogen to Carbon in Spent Coffee Grounds by Hydrothermal Carbonization," Energies, MDPI, vol. 14(20), pages 1-11, October.
- Wilk, Małgorzata & Śliz, Maciej & Gajek, Marcin, 2021. "The effects of hydrothermal carbonization operating parameters on high-value hydrochar derived from beet pulp," Renewable Energy, Elsevier, vol. 177(C), pages 216-228.
- Chau Huyen Dang & Gianluigi Farru & Claudia Glaser & Marcus G. Fischer & Judy A. Libra, 2023. "Enhancing the Fuel Properties of Spent Coffee Grounds through Hydrothermal Carbonization: Output Prediction and Post-Treatment Approaches," Sustainability, MDPI, vol. 16(1), pages 1-24, December.
More about this item
Keywords
spent coffee grounds; hydrothermal liquefaction; volatile fatty acids; fatty acid methyl esters;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:2094-:d:1637442. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.