IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10700-d1188696.html
   My bibliography  Save this article

Hydrochars Derived from Spent Coffee Grounds as Zn Bio-Chelates for Agronomic Biofortification

Author

Listed:
  • Leslie Lara-Ramos

    (Department of Chemical Engineering, University of Granada, 18071 Granada, Spain)

  • Ana Cervera-Mata

    (Department of Soil Science and Agricultural Chemistry, University of Granada, 18071 Granada, Spain)

  • Jesús Fernández-Bayo

    (Department of Soil Science and Agricultural Chemistry, University of Granada, 18071 Granada, Spain)

  • Miguel Navarro-Alarcón

    (Department of Nutrition and Bromatology, University of Granada, 18071 Granada, Spain)

  • Gabriel Delgado

    (Department of Soil Science and Agricultural Chemistry, University of Granada, 18071 Granada, Spain)

  • Alejandro Fernández-Arteaga

    (Department of Chemical Engineering, University of Granada, 18071 Granada, Spain)

Abstract

Previous studies have attributed both phytotoxicity and the capacity to mobilize nutrient elements to the presence of polyphenols and melanoidins in spent coffee grounds (SCG) and SCG-hydrochars obtained through hydrothermal carbonization (HTC). This work aimed to evaluate SCG and two SCG-hydrochars obtained at 160 and 200 °C that were functionalized with Zn salts (bio-chelates), to achieve the in vitro biofortification of lettuce. Two application modes were established: (1) a fixed Zn concentration of 10 mg kg −1 of soil and (2) a fixed dose of 0.5% bio-product. Soil alone (control A) and commercial chelates (control B) were used as controls. Outcomes showed that SCG-hydrochars retain the capacity to mobilize Zn compared to SCG. However, the chelating capacity was reduced (Zn: 94%) and the toxicity was significantly increased ( p < 0.05) with higher temperatures of HTC (200 °C). Both fresh and dry lettuce weights were less affected at doses of 0.5% of bio-product and registered a maximum increase of 136% of Zn in the plant content. The present study approaches the possibility of using these by-products as bioinorganic fertilizers at subtoxic doses, although more research is needed.

Suggested Citation

  • Leslie Lara-Ramos & Ana Cervera-Mata & Jesús Fernández-Bayo & Miguel Navarro-Alarcón & Gabriel Delgado & Alejandro Fernández-Arteaga, 2023. "Hydrochars Derived from Spent Coffee Grounds as Zn Bio-Chelates for Agronomic Biofortification," Sustainability, MDPI, vol. 15(13), pages 1-13, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10700-:d:1188696
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10700/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10700/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Azzaz, Ahmed Amine & Khiari, Besma & Jellali, Salah & Ghimbeu, Camélia Matei & Jeguirim, Mejdi, 2020. "Hydrochars production, characterization and application for wastewater treatment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    2. Afolabi, Oluwasola O.D. & Sohail, M. & Cheng, Yu-Ling, 2020. "Optimisation and characterisation of hydrochar production from spent coffee grounds by hydrothermal carbonisation," Renewable Energy, Elsevier, vol. 147(P1), pages 1380-1391.
    3. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    4. Paola Navid García-Hernández & José Martín Baas-López & Tanit Toledano-Thompson & Ruby Valdez-Ojeda & Daniella Pacheco-Catalán, 2021. "Revalorization of Pleurotus djamor Fungus Culture: Fungus-Derived Carbons for Supercapacitor Application," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Boon Peng & Rodriguez-Uribe, Arturo & Mohanty, Amar K. & Misra, Manjusri, 2021. "A comprehensive review of renewable and sustainable biosourced carbon through pyrolysis in biocomposites uses: Current development and future opportunity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Joanna Mikusińska & Monika Kuźnia & Klaudia Czerwińska & Małgorzata Wilk, 2023. "Hydrothermal Carbonization of Digestate Produced in the Biogas Production Process," Energies, MDPI, vol. 16(14), pages 1-18, July.
    3. Wilk, Małgorzata & Śliz, Maciej & Gajek, Marcin, 2021. "The effects of hydrothermal carbonization operating parameters on high-value hydrochar derived from beet pulp," Renewable Energy, Elsevier, vol. 177(C), pages 216-228.
    4. Djandja, Oraléou Sangué & Duan, Pei-Gao & Yin, Lin-Xin & Wang, Zhi-Cong & Duo, Jia, 2021. "A novel machine learning-based approach for prediction of nitrogen content in hydrochar from hydrothermal carbonization of sewage sludge," Energy, Elsevier, vol. 232(C).
    5. Giuseppe Maggiotto & Gianpiero Colangelo & Marco Milanese & Arturo de Risi, 2023. "Thermochemical Technologies for the Optimization of Olive Wood Biomass Energy Exploitation: A Review," Energies, MDPI, vol. 16(19), pages 1-17, September.
    6. Dilvin Cebi & Melih Soner Celiktas & Hasan Sarptas, 2022. "A Review on Sewage Sludge Valorization via Hydrothermal Carbonization and Applications for Circular Economy," Circular Economy and Sustainability,, Springer.
    7. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    8. Sooraj Kumar & Suhail Ahmed Soomro & Khanji Harijan & Mohammad Aslam Uqaili & Laveet Kumar, 2023. "Advancements of Biochar-Based Catalyst for Improved Production of Biodiesel: A Comprehensive Review," Energies, MDPI, vol. 16(2), pages 1-20, January.
    9. Mäkelä, Mikko & Yoshikawa, Kunio, 2016. "Simulating hydrothermal treatment of sludge within a pulp and paper mill," Applied Energy, Elsevier, vol. 173(C), pages 177-183.
    10. Śliz, Maciej & Wilk, Małgorzata, 2020. "A comprehensive investigation of hydrothermal carbonization: Energy potential of hydrochar derived from Virginia mallow," Renewable Energy, Elsevier, vol. 156(C), pages 942-950.
    11. Yao, Zhongliang & Ma, Xiaoqian & Xiao, Zhiyuan, 2020. "The effect of two pretreatment levels on the pyrolysis characteristics of water hyacinth," Renewable Energy, Elsevier, vol. 151(C), pages 514-527.
    12. Tobias Pröll & Florian Zerobin, 2019. "Biomass-based negative emission technology options with combined heat and power generation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(7), pages 1307-1324, October.
    13. Tariqul Islam & Yanliang Li & Hefa Cheng, 2021. "Biochars and Engineered Biochars for Water and Soil Remediation: A Review," Sustainability, MDPI, vol. 13(17), pages 1-25, September.
    14. Aragón-Briceño, C.I. & Pozarlik, A.K. & Bramer, E.A. & Niedzwiecki, Lukasz & Pawlak-Kruczek, H. & Brem, G., 2021. "Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review," Renewable Energy, Elsevier, vol. 171(C), pages 401-415.
    15. Lee, Jechan & Kim, Soosan & You, Siming & Park, Young-Kwon, 2023. "Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    16. Baghel, Paramjeet & Sakhiya, Anil Kumar & Kaushal, Priyanka, 2022. "Influence of temperature on slow pyrolysis of Prosopis Juliflora: An experimental and thermodynamic approach," Renewable Energy, Elsevier, vol. 185(C), pages 538-551.
    17. Eunhye Song & Ho Kim & Kyung Woo Kim & Young-Man Yoon, 2023. "Characteristic Evaluation of Different Carbonization Processes for Hydrochar, Torrefied Char, and Biochar Produced from Cattle Manure," Energies, MDPI, vol. 16(7), pages 1-14, April.
    18. Poritosh Roy & Animesh Dutta & Jim Gallant, 2018. "Hydrothermal Carbonization of Peat Moss and Herbaceous Biomass (Miscanthus): A Potential Route for Bioenergy," Energies, MDPI, vol. 11(10), pages 1-14, October.
    19. Neel Patel & Bishnu Acharya & Prabir Basu, 2021. "Hydrothermal Carbonization (HTC) of Seaweed (Macroalgae) for Producing Hydrochar," Energies, MDPI, vol. 14(7), pages 1-16, March.
    20. Surup, Gerrit Ralf & Leahy, James J. & Timko, Michael T. & Trubetskaya, Anna, 2020. "Hydrothermal carbonization of olive wastes to produce renewable, binder-free pellets for use as metallurgical reducing agents," Renewable Energy, Elsevier, vol. 155(C), pages 347-357.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10700-:d:1188696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.