IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i8p2065-d1636622.html
   My bibliography  Save this article

The Role of Multilevel Inverters in Mitigating Harmonics and Improving Power Quality in Renewable-Powered Smart Grids: A Comprehensive Review

Author

Listed:
  • Shanikumar Vaidya

    (School of Engineering, Computer and Mathematical Sciences Auckland University of Technology, Auckland 1010, New Zealand)

  • Krishnamachar Prasad

    (School of Engineering, Computer and Mathematical Sciences Auckland University of Technology, Auckland 1010, New Zealand)

  • Jeff Kilby

    (School of Engineering, Computer and Mathematical Sciences Auckland University of Technology, Auckland 1010, New Zealand)

Abstract

The world is increasingly turning to renewable energy sources (RES) to address climate change issues and achieve net-zero carbon emissions. Integrating RES into existing power grids is necessary for sustainability because the unpredictability and irregularity of the RES can affect grid stability and generate power quality issues, leading to equipment damage and increasing operational costs. As a result, the importance of RES is severely compromised. To tackle these challenges, traditional power systems (TPS) will have to become more innovative. Smart grids use advanced technology such as two-way communication between consumers and service providers, automated control, and real-time monitoring to manage power flow effectively. Inverters are effective tools for solving power quality problems in renewable-powered smart grids. However, their effectiveness depends on topology, control method and design. This review paper focuses on the role of multilevel inverters (MLIs) in mitigating power quality issues such as voltage sag, swell and total harmonics distortion (THD). The results shown here are through simulation studies using DC sources but can be extended to RES-integrated smart grids. The comprehensive review also examines the drawbacks of TPS to understand the importance and necessity of developing a smart power system. Finally, the paper discusses future trends in MLI control technology, addressing power quality problems in smart grid environments.

Suggested Citation

  • Shanikumar Vaidya & Krishnamachar Prasad & Jeff Kilby, 2025. "The Role of Multilevel Inverters in Mitigating Harmonics and Improving Power Quality in Renewable-Powered Smart Grids: A Comprehensive Review," Energies, MDPI, vol. 18(8), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:2065-:d:1636622
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/8/2065/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/8/2065/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    2. Divya R. Nair & Manjula G. Nair & Tripta Thakur, 2022. "A Smart Microgrid System with Artificial Intelligence for Power-Sharing and Power Quality Improvement," Energies, MDPI, vol. 15(15), pages 1-20, July.
    3. Kotb B. Tawfiq & Peter Sergeant & Arafa S. Mansour, 2024. "Comparative Analysis of Space Vector Pulse-Width Modulation Techniques of Three-Phase Inverter to Minimize Common Mode Voltage and/or Switching Losses," Mathematics, MDPI, vol. 12(18), pages 1-21, September.
    4. Zouhaira Ben Mahmoud & Adel Khedher, 2024. "A Comprehensive Review on Space Vector Based-PWM Techniques for Common Mode Voltage Mitigation in Photovoltaic Multi-Level Inverters," Energies, MDPI, vol. 17(4), pages 1-33, February.
    5. Erick Alves & Santiago Sanchez & Danilo Brandao & Elisabetta Tedeschi, 2019. "Smart Load Management with Energy Storage for Power Quality Enhancement in Wind-Powered Oil and Gas Applications," Energies, MDPI, vol. 12(15), pages 1-15, August.
    6. Tuballa, Maria Lorena & Abundo, Michael Lochinvar, 2016. "A review of the development of Smart Grid technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 710-725.
    7. Subhashree Choudhury & Mohit Bajaj & Taraprasanna Dash & Salah Kamel & Francisco Jurado, 2021. "Multilevel Inverter: A Survey on Classical and Advanced Topologies, Control Schemes, Applications to Power System and Future Prospects," Energies, MDPI, vol. 14(18), pages 1-48, September.
    8. Mwasilu, Francis & Justo, Jackson John & Kim, Eun-Kyung & Do, Ton Duc & Jung, Jin-Woo, 2014. "Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 501-516.
    9. Manzoore Elahi M Soudagar & S Ramesh & T M Yunus Khan & Naif Almakayeel & R Ramesh & Nik Nazri Nik Ghazali & Erdem Cuce & Sagar Shelare, 2024. "An overview of the existing and future state of the art advancement of hybrid energy systems based on PV-solar and wind," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 19, pages 207-216.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaukat, N. & Khan, B. & Ali, S.M. & Mehmood, C.A. & Khan, J. & Farid, U. & Majid, M. & Anwar, S.M. & Jawad, M. & Ullah, Z., 2018. "A survey on electric vehicle transportation within smart grid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1329-1349.
    2. Dileep, G., 2020. "A survey on smart grid technologies and applications," Renewable Energy, Elsevier, vol. 146(C), pages 2589-2625.
    3. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.
    4. Paul Arévalo & Francisco Jurado, 2024. "Impact of Artificial Intelligence on the Planning and Operation of Distributed Energy Systems in Smart Grids," Energies, MDPI, vol. 17(17), pages 1-22, September.
    5. Das, Laya & Munikoti, Sai & Natarajan, Balasubramaniam & Srinivasan, Babji, 2020. "Measuring smart grid resilience: Methods, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    6. Mahmud, Khizir & Town, Graham E. & Morsalin, Sayidul & Hossain, M.J., 2018. "Integration of electric vehicles and management in the internet of energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4179-4203.
    7. Ruifeng Shi & Shaopeng Li & Changhao Sun & Kwang Y. Lee, 2018. "Adjustable Robust Optimization Algorithm for Residential Microgrid Multi-Dispatch Strategy with Consideration of Wind Power and Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-22, August.
    8. Mahmud, Khizir & Khan, Behram & Ravishankar, Jayashri & Ahmadi, Abdollah & Siano, Pierluigi, 2020. "An internet of energy framework with distributed energy resources, prosumers and small-scale virtual power plants: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    9. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Chaouachi, Aymen & Bompard, Ettore & Fulli, Gianluca & Masera, Marcelo & De Gennaro, Michele & Paffumi, Elena, 2016. "Assessment framework for EV and PV synergies in emerging distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 719-728.
    11. Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Saad Mekhilef & Mehdi Seyedmahmoudian & Alex Stojcevski & Ibrahim Alhamrouni, 2024. "AI Applications to Enhance Resilience in Power Systems and Microgrids—A Review," Sustainability, MDPI, vol. 16(12), pages 1-35, June.
    12. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    13. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    14. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    15. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    16. Lan, Puzhe & Han, Dong & Xu, Xiaoyuan & Yan, Zheng & Ren, Xijun & Xia, Shiwei, 2022. "Data-driven state estimation of integrated electric-gas energy system," Energy, Elsevier, vol. 252(C).
    17. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    18. Omar A. Beg & Asad Ali Khan & Waqas Ur Rehman & Ali Hassan, 2023. "A Review of AI-Based Cyber-Attack Detection and Mitigation in Microgrids," Energies, MDPI, vol. 16(22), pages 1-23, November.
    19. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    20. MHD Nour Hindia & Faizan Qamar & Mohammad B. Majed & Tharek Abd Rahman & Iraj S. Amiri, 2019. "Enabling remote-control for the power sub-stations over LTE-A networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 70(1), pages 37-53, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:2065-:d:1636622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.