IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i8p2044-d1635992.html
   My bibliography  Save this article

Asymmetric Four-Terminal Solar Concentrator Improving Power Collection in Bifacial Solar Cells

Author

Listed:
  • Floriana Morabito

    (CNR-Institute for Photonics and Nanotechnologies Milano, Piazza L. da Vinci 32, 20133 Milan, Italy)

  • Daniela Fontani

    (CNR-National Institute of Optics, Largo E. Fermi 6, 50125 Firenze, Italy)

  • Paola Sansoni

    (CNR-National Institute of Optics, Largo E. Fermi 6, 50125 Firenze, Italy)

  • Salvatore Lombardo

    (CNR-Institute for Microelectronics and Microsystems, Zona Industriale, Ottava Strada 5, 95121 Catania, Italy)

  • Andrea Farina

    (CNR-Institute for Photonics and Nanotechnologies Milano, Piazza L. da Vinci 32, 20133 Milan, Italy)

  • Silvia Maria Pietralunga

    (CNR-Institute for Photonics and Nanotechnologies Milano, Piazza L. da Vinci 32, 20133 Milan, Italy)

Abstract

The exploitation of bifacial solar cells in photovoltaics aims to provide cost-effective solutions to maximize solar power collection on specific surfaces. A prerequisite for this is the effective collection of backscattered diffuse light from albedo, to which self-shading is an obstacle. We discuss the benefits of bifaciality for an asymmetric low-concentrating and spectral-splitting photovoltaic optics system that features a wedged right-prism geometry to address self-shading. The performance of the conceptual design is analyzed, using commercial ray-tracing software, for four different latitudes of installation, by assuming a standard solar AM1.5G spectrum as input. The daily Relative Optical Power Increase (ROPI) is evaluated with respect to standard flat bifacial configurations, reaching ROPI = 293% at a latitude of 25° north at winter solstice. The photocurrent and total Power Conversion Efficiency (PCE) in a four-terminal (4T) configuration are estimated, assuming the operation of a commercial Si HJT bifacial cell and a commercial single-junction GaAs cell. A global increase in PCE of up to 23% is obtained with respect to the best-performing trackless standard bifacial configuration. From this perspective, the use of high-performance, high-bandgap solar cells in 4T configurations might further leverage the advantages of the optics proposed here.

Suggested Citation

  • Floriana Morabito & Daniela Fontani & Paola Sansoni & Salvatore Lombardo & Andrea Farina & Silvia Maria Pietralunga, 2025. "Asymmetric Four-Terminal Solar Concentrator Improving Power Collection in Bifacial Solar Cells," Energies, MDPI, vol. 18(8), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:2044-:d:1635992
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/8/2044/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/8/2044/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vincenzo Muteri & Francesco Guarino & Sonia Longo & Letizia Bua & Maurizio Cellura & Daniele Testa & Marco Bonzi, 2022. "An Innovative Photovoltaic Luminescent Solar Concentrator Window: Energy and Environmental Aspects," Sustainability, MDPI, vol. 14(7), pages 1-31, April.
    2. Li, Guiqiang & Xuan, Qingdong & Akram, M.W. & Golizadeh Akhlaghi, Yousef & Liu, Haowen & Shittu, Samson, 2020. "Building integrated solar concentrating systems: A review," Applied Energy, Elsevier, vol. 260(C).
    3. Hong, Wenpeng & Li, Boyu & Li, Haoran & Niu, Xiaojuan & Li, Yan & Lan, Jingrui, 2022. "Recent progress in thermal energy recovery from the decoupled photovoltaic/thermal system equipped with spectral splitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Fabio Ricco Galluzzo & Pier Enrico Zani & Marina Foti & Andrea Canino & Cosimo Gerardi & Salvatore Lombardo, 2020. "Numerical Modeling of Bifacial PV String Performance: Perimeter Effect and Influence of Uniaxial Solar Trackers," Energies, MDPI, vol. 13(4), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Cheng-gang & Chen, Fei, 2021. "Model verification and photo-thermal conversion assessment of a novel facade embedded compound parabolic concentrator," Energy, Elsevier, vol. 220(C).
    2. Vijayaraja Loganathan & Dhanasekar Ravikumar & Rupa Kesavan & Kanakasri Venkatesan & Raadha Saminathan & Raju Kannadasan & Mahalingam Sudhakaran & Mohammed H. Alsharif & Zong Woo Geem & Junhee Hong, 2022. "A Case Study on Renewable Energy Sources, Power Demand, and Policies in the States of South India—Development of a Thermoelectric Model," Sustainability, MDPI, vol. 14(14), pages 1-29, July.
    3. Chen, Haifei & Li, Guiqiang & Zhong, Yang & Wang, Yunjie & Cai, Baorui & Yang, Jie & Badiei, Ali & Zhang, Yang, 2021. "Exergy analysis of a high concentration photovoltaic and thermal system for comprehensive use of heat and electricity," Energy, Elsevier, vol. 225(C).
    4. Jouttijärvi, Sami & Lobaccaro, Gabriele & Kamppinen, Aleksi & Miettunen, Kati, 2022. "Benefits of bifacial solar cells combined with low voltage power grids at high latitudes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Sinha, Shreya & Narain, Nivedita & Bhanjdeo, Arundhita, 2022. "Building back better? Resilience as wellbeing for rural migrant households in Bihar, India," World Development, Elsevier, vol. 159(C).
    6. Diogo Cabral & Abolfazl Hayati & João Gomes & Hossein Afzali Gorouh & Pouriya Nasseriyan & Mazyar Salmanzadeh, 2023. "Experimental Electrical Assessment Evaluation of a Vertical n-PERT Half-Size Bifacial Solar Cell String Receiver on a Parabolic Trough Solar Collector," Energies, MDPI, vol. 16(4), pages 1-21, February.
    7. Tenbensel, Tim & Cumming, Jacqueline & Willing, Esther, 2023. "The 2022 restructure of Aotearoa New Zealand's health system: Will it succeed in advancing equity where others have failed?," Health Policy, Elsevier, vol. 134(C).
    8. Faisal Masood & Perumal Nallagownden & Irraivan Elamvazuthi & Javed Akhter & Mohammad Azad Alam, 2021. "A New Approach for Design Optimization and Parametric Analysis of Symmetric Compound Parabolic Concentrator for Photovoltaic Applications," Sustainability, MDPI, vol. 13(9), pages 1-25, April.
    9. Li, Haoming & Wan, Shuaibin & Wang, Lu & Zhao, Jiyun & Ji, Dongxu, 2025. "Divide and conquer: Spectral-splitting and utilization of thermal radiation from waste heat in the steel industry," Applied Energy, Elsevier, vol. 378(PA).
    10. Bushra, Nayab, 2023. "Techno-economic feasibility assessment of a planer cassegrain solar concentrator (PCSC) based on a parametric modeling approach," Energy, Elsevier, vol. 273(C).
    11. Xuan, Qingdong & Li, Guiqiang & Yang, Honglun & Gao, Cai & Jiang, Bin & Liu, Xiangnong & Ji, Jie & Zhao, Xudong & Pei, Gang, 2021. "Performance evaluation for the dielectric asymmetric compound parabolic concentrator with almost unity angular acceptance efficiency," Energy, Elsevier, vol. 233(C).
    12. Mehrdad Ghamari & Senthilarasu Sundaram, 2024. "Solar Window Innovations: Enhancing Building Performance through Advanced Technologies," Energies, MDPI, vol. 17(14), pages 1-31, July.
    13. Wang, Qiliang & Pei, Gang & Yang, Hongxing, 2021. "Techno-economic assessment of performance-enhanced parabolic trough receiver in concentrated solar power plants," Renewable Energy, Elsevier, vol. 167(C), pages 629-643.
    14. Xuan, Qingdong & Li, Guiqiang & Lu, Yashun & Zhao, Bin & Wang, Fuqiang & Pei, Gang, 2021. "Daylighting utilization and uniformity comparison for a concentrator-photovoltaic window in energy saving application on the building," Energy, Elsevier, vol. 214(C).
    15. Giulio Mangherini & Valentina Diolaiti & Paolo Bernardoni & Alfredo Andreoli & Donato Vincenzi, 2023. "Review of Façade Photovoltaic Solutions for Less Energy-Hungry Buildings," Energies, MDPI, vol. 16(19), pages 1-35, September.
    16. Habibi, Mohammad & Cui, Longji, 2023. "Modelling and performance analysis of a novel thermophotovoltaic system with enhanced radiative heat transfer for combined heat and power generation," Applied Energy, Elsevier, vol. 343(C).
    17. Nan Yang & Weixiu Shi & Zihong Zhou, 2023. "Research on Application and International Policy of Renewable Energy in Buildings," Sustainability, MDPI, vol. 15(6), pages 1-25, March.
    18. Derick Mathew & Mohamed Emad Farrag & Rani Chinnappa Naidu & Rajesh Kumar Muthu & A Sivaprakasam & P Somasundaram, 2021. "Buck-Boost Single-Stage Microinverter for Building Integrated Photovoltaic Systems," Energies, MDPI, vol. 14(23), pages 1-21, November.
    19. Liu, Haixiang & He, Wei & Liu, Xianghua & Zhu, Jian & Yu, Hancheng & Hu, Zhongting, 2023. "Building integrated concentrating photovoltaic window coupling luminescent solar concentrator and thermotropic material," Energy, Elsevier, vol. 284(C).
    20. Bushra, Nayab, 2023. "Parametric model of window-integrated planer Cassegrain concentrator-based shading system (PCSS)," Applied Energy, Elsevier, vol. 340(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:2044-:d:1635992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.