IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i8p2009-d1634345.html
   My bibliography  Save this article

Direct Current Photovoltaic Solar Energy for Water Heating

Author

Listed:
  • Juan José Milón Guzmán

    (Instituto de Energías Renovables, Universidad Tecnológica del Perú, Lima 15046, Peru)

  • Sergio Leal Braga

    (Departamento de Engenharia Mecânica, Pontificia Universidade Católica do Rio de Janeiro, Rio de Janeiro 22451-900, Brazil)

  • Florian Alain Yannick Pradelle

    (Departamento de Engenharia Mecânica, Pontificia Universidade Católica do Rio de Janeiro, Rio de Janeiro 22451-900, Brazil)

  • Mario Enrique Díaz Coa

    (Departamento de Engenharia Mecânica, Pontificia Universidade Católica do Rio de Janeiro, Rio de Janeiro 22451-900, Brazil)

Abstract

In this study, an experimental device is developed and implemented to evaluate the process of heating water using photovoltaic solar energy in direct current. The prototype consists of a 147 L stainless steel tank, a 5000 W heating element, and four solar panels (370 W each). Tests were carried out with a direct photovoltaic power supply and with the use of a maximum power point tracking (MPPT) device. Temperature and electrical sensors were installed and connected to a data acquisition system. The results show that the electrical energy produced by the PV solar panels can be used directly for water heating. For the direct PV power supply, the average total efficiency is 12%; with the MPPT, the average value is 18.2%. There is a clear improvement in efficiency when using a device with maximum power tracking, improving the heating process and reducing the time needed to reach the set temperature. This technology can be applied to water heating in residences, medical centers, and other buildings that require it.

Suggested Citation

  • Juan José Milón Guzmán & Sergio Leal Braga & Florian Alain Yannick Pradelle & Mario Enrique Díaz Coa, 2025. "Direct Current Photovoltaic Solar Energy for Water Heating," Energies, MDPI, vol. 18(8), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:2009-:d:1634345
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/8/2009/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/8/2009/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Wei & Wang, Xiaoyu & Xia, Man & Dou, Yiping & Yin, Zhengyu & Wang, Jun & Lu, Ping, 2020. "A novel composite PCM for seasonal thermal energy storage of solar water heating system," Renewable Energy, Elsevier, vol. 161(C), pages 457-469.
    2. Antonio Lecuona-Neumann & José I. Nogueira-Goriba & Antonio Famiglietti & María del Carmen Rodríguez-Hidalgo & Jean Boubour, 2024. "Solar Photovoltaic Cooker with No Electronics or Battery," Energies, MDPI, vol. 17(5), pages 1-21, March.
    3. Fernando del Ama Gonzalo & Belen Moreno Santamaria & José Antonio Ferrándiz Gea & Matthew Griffin & Juan A. Hernandez Ramos, 2021. "Zero Energy Building Economic and Energetic Assessment with Simulated and Real Data Using Photovoltaics and Water Flow Glazing," Energies, MDPI, vol. 14(11), pages 1-20, June.
    4. Ivar Kotte & Emma Snaak & Wilfried van Sark, 2024. "Storing Excess Solar Power in Hot Water on Household Level as Power-to-Heat System," Energies, MDPI, vol. 17(20), pages 1-19, October.
    5. Yildiz, Baran & Bilbao, Jose I. & Roberts, Mike & Heslop, Simon & Dore, Jonathon & Bruce, Anna & MacGill, Iain & Egan, Renate J. & Sproul, Alistair B., 2021. "Analysis of electricity consumption and thermal storage of domestic electric water heating systems to utilize excess PV generation," Energy, Elsevier, vol. 235(C).
    6. Tom Simko & Mark B. Luther & Hong Xian Li & Peter Horan, 2021. "Applying Solar PV to Heat Pump and Storage Technologies in Australian Houses," Energies, MDPI, vol. 14(17), pages 1-18, September.
    7. Mohammad Emamjome Kashan & Alan S. Fung & John Swift, 2021. "Integrating Novel Microchannel-Based Solar Collectors with a Water-to-Water Heat Pump for Cold-Climate Domestic Hot Water Supply, Including Related Solar Systems Comparisons," Energies, MDPI, vol. 14(13), pages 1-31, July.
    8. Mi, Peiyuan & Zhang, Jili & Gao, Jin & Han, Youhua, 2023. "Study on optimal allocation of solar photovoltaic thermal heat pump integrated energy system for domestic hot water," Renewable Energy, Elsevier, vol. 219(P1).
    9. Clift, Dean Holland & Hasan, Kazi N. & Rosengarten, Gary, 2024. "Peer-to-peer energy trading for demand response of residential smart electric storage water heaters," Applied Energy, Elsevier, vol. 353(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    2. Yuzhe Qin & Qing Cheng, 2025. "Optimization Study of Photovoltaic Cell Arrangement Strategies in Greenhouses," Energies, MDPI, vol. 18(1), pages 1-28, January.
    3. Ahmet Feyzioglu, 2023. "A Study on the Control System of Electric Water Heaters for Decarbonization," Energies, MDPI, vol. 16(5), pages 1-12, March.
    4. Ljungdahl, V. & Taha, K. & Dallaire, J. & Kieseritzky, E. & Pawelz, F. & Jradi, M. & Veje, C., 2021. "Phase change material based ventilation module - Numerical study and experimental validation of serial design," Energy, Elsevier, vol. 234(C).
    5. Rendall, Joseph & Elatar, Ahmed & Nawaz, Kashif & Sun, Jian, 2023. "Medium-temperature phase change material integration in domestic heat pump water heaters for improved thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    6. Mark B. Luther & Igor Martek & Mehdi Amirkhani & Gerhard Zucker, 2022. "Special Issue “Environmental Technology Applications in the Retrofitting of Residential Buildings”," Energies, MDPI, vol. 15(16), pages 1-4, August.
    7. Nishant Modi & Xiaolin Wang & Michael Negnevitsky, 2023. "Solar Hot Water Systems Using Latent Heat Thermal Energy Storage: Perspectives and Challenges," Energies, MDPI, vol. 16(4), pages 1-20, February.
    8. Sohani, Ali & Cornaro, Cristina & Shahverdian, Mohammad Hassan & Moser, David & Pierro, Marco & Olabi, Abdul Ghani & Karimi, Nader & Nižetić, Sandro & Li, Larry K.B. & Doranehgard, Mohammad Hossein, 2023. "Techno-economic evaluation of a hybrid photovoltaic system with hot/cold water storage for poly-generation in a residential building," Applied Energy, Elsevier, vol. 331(C).
    9. Ait Laasri, Imad & Charai, Mouatassim & Mghazli, Mohamed Oualid & Outzourhit, Abdelkader, 2024. "Energy performance assessment of a novel enhanced solar thermal system with topology optimized latent heat thermal energy storage unit for domestic water heating," Renewable Energy, Elsevier, vol. 224(C).
    10. Wu, Qian & Song, Qiankun & He, Xing & Chen, Guo & Huang, Tingwen, 2024. "Distributed peer-to-peer energy trading framework with manufacturing assembly process and uncertain renewable energy plants in multi-industrial micro-grids," Energy, Elsevier, vol. 302(C).
    11. Jiang, L. & Li, S. & Wang, R.Q. & Fan, Y.B. & Zhang, X.J. & Roskilly, A.P., 2021. "Performance analysis on a hybrid compression-assisted sorption thermal battery for seasonal heat storage in severe cold region," Renewable Energy, Elsevier, vol. 180(C), pages 398-409.
    12. Sudhir Kumar Pathak & V. V. Tyagi & K. Chopra & A. K. Pandey & Ahmet Sari & Ammar M. Abdulateef, 2023. "Energetic, Exergetic, and Heat Transfer Assessment of PCM-Integrated Heat-Pipe-Based ETSC for Clear and Cloudy Weather Conditions," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    13. Saman Abolghasemi Moghaddam & Catarina Serra & Manuel Gameiro da Silva & Nuno Simões, 2023. "Comprehensive Review and Analysis of Glazing Systems towards Nearly Zero-Energy Buildings: Energy Performance, Thermal Comfort, Cost-Effectiveness, and Environmental Impact Perspectives," Energies, MDPI, vol. 16(17), pages 1-30, August.
    14. Sheng Yang & Hong-Yi Shi & Jia Liu & Yang-Yan Lai & Özgür Bayer & Li-Wu Fan, 2024. "Supercooled erythritol for high-performance seasonal thermal energy storage," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Chen, Sihui & Lyu, Yuanli & Li, Chunying & Li, Xueyang & Yang, Wei & Wang, Ting, 2024. "Liquid flow glazing contributes to energy-efficient buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    16. Clift, Dean Holland & Stanley, Cameron & Hasan, Kazi N. & Rosengarten, Gary, 2023. "Assessment of advanced demand response value streams for water heaters in renewable-rich electricity markets," Energy, Elsevier, vol. 267(C).
    17. Gong, Shuai & Li, Qiong & Shao, Liqun & Ding, Yuwen & Gao, Wenfeng, 2024. "Performance analysis of V-corrugated flat plate collector containing binary crystal thermal storage materials," Renewable Energy, Elsevier, vol. 221(C).
    18. Michael J. Ritchie & Jacobus A. A. Engelbrecht & Marthinus J. Booysen, 2022. "Centrally Adapted Optimal Control of Multiple Electric Water Heaters," Energies, MDPI, vol. 15(4), pages 1-24, February.
    19. Jacek Kasperski & Anna Bać & Oluwafunmilola Oladipo, 2023. "A Simulation of a Sustainable Plus-Energy House in Poland Equipped with a Photovoltaic Powered Seasonal Thermal Storage System," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    20. Tian, Lei & Wang, Jiangjiang & Zhao, Lei & Wei, Changqi, 2023. "Unsteady-state thermal performance analysis of cascaded packed-bed latent thermal storage in solar heating system," Energy, Elsevier, vol. 272(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:2009-:d:1634345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.