IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i8p1896-d1630588.html
   My bibliography  Save this article

Second-Order Ripple Current Suppression Based on Virtual Impedance in the Application of Dynamic Voltage Restorer

Author

Listed:
  • Guoping Huang

    (Foshan Power Supply Bureau of Guangdong Power Grid Co., Ltd., Foshan 528000, China)

  • Qiao Shi

    (Foshan Power Supply Bureau of Guangdong Power Grid Co., Ltd., Foshan 528000, China)

  • Wenqing Li

    (Foshan Power Supply Bureau of Guangdong Power Grid Co., Ltd., Foshan 528000, China)

  • Qing Zhang

    (School of Automation and Science and Engineering, South China University of Technology, Guangzhou 510006, China)

  • Junfeng Liu

    (School of Automation and Science and Engineering, South China University of Technology, Guangzhou 510006, China)

Abstract

In existing two-stage single-phase dynamic voltage restorer (DVR) voltage sag mitigation devices, the output-side power contains a pulsating component at twice the fundamental frequency (2 f 0 ), leading to the presence of second-order ripple currents (SRCs) on the DC input side. This, to some extent, affects the reliability of the system and has a significant impact on the lifespan of energy storage devices. In this study, the dual-loop control method of the buck/boost converter is combined with the virtual impedance auxiliary control strategy to suppress SRCs. Compared to existing solutions, this method offers the advantages of being fast, stable, and reliable, while the virtual impedance auxiliary control strategy is flexible and easy to implement. The feasibility and stability of this strategy were verified using a 3 kW DVR prototype. When applying the two virtual impedance methods, the second harmonic content was reduced from 39.64% to 1.74% and 1.78%, respectively. The proposed control strategy demonstrates significant effectiveness in suppressing second harmonic currents.

Suggested Citation

  • Guoping Huang & Qiao Shi & Wenqing Li & Qing Zhang & Junfeng Liu, 2025. "Second-Order Ripple Current Suppression Based on Virtual Impedance in the Application of Dynamic Voltage Restorer," Energies, MDPI, vol. 18(8), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:1896-:d:1630588
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/8/1896/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/8/1896/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhai, Xiangyu & Li, Zening & Li, Zhengmao & Xue, Yixun & Chang, Xinyue & Su, Jia & Jin, Xiaolong & Wang, Peng & Sun, Hongbin, 2025. "Risk-averse energy management for integrated electricity and heat systems considering building heating vertical imbalance: An asynchronous decentralized approach," Applied Energy, Elsevier, vol. 383(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caixin Yan & Zhifeng Qiu, 2025. "Review of Power Market Optimization Strategies Based on Industrial Load Flexibility," Energies, MDPI, vol. 18(7), pages 1-41, March.
    2. Sakthivelnathan Nallainathan & Ali Arefi & Christopher Lund & Ali Mehrizi-Sani, 2025. "Microgrid Reliability Incorporating Uncertainty in Weather and Equipment Failure," Energies, MDPI, vol. 18(8), pages 1-23, April.
    3. Giuseppe Rausa & Maurizio Calabrese & Ramiro Velazquez & Carolina Del-Valle-Soto & Roberto De Fazio & Paolo Visconti, 2025. "Mechanical, Thermal, and Environmental Energy Harvesting Solutions in Fully Electric and Hybrid Vehicles: Innovative Approaches and Commercial Systems," Energies, MDPI, vol. 18(8), pages 1-54, April.
    4. Vasileios Kilis & Georgios Anastasiadis & Nikolaos Ploskas & Giorgos Panaras, 2025. "Optimization of Renewable-Based Multi-Energy Systems in Residential Building Design," Energies, MDPI, vol. 18(6), pages 1-20, March.
    5. Luca Viscito & Francesco Pelella & Andrea Rega & Federico Magnea & Gerardo Maria Mauro & Alessandro Zanella & Alfonso William Mauro & Nicola Bianco, 2025. "Physical Model for the Simulation of an Air Handling Unit Employed in an Automotive Production Process: Calibration Procedure and Potential Energy Saving," Energies, MDPI, vol. 18(7), pages 1-25, April.
    6. Alexandre Rekeraho & Daniel Tudor Cotfas & Titus C. Balan & Petru Adrian Cotfas & Rebecca Acheampong & Emmanuel Tuyishime, 2025. "Cybersecurity Threat Modeling for IoT-Integrated Smart Solar Energy Systems: Strengthening Resilience for Global Energy Sustainability," Sustainability, MDPI, vol. 17(6), pages 1-31, March.
    7. Bin Ji & Haiyang Huang & Yu Gao & Fangliang Zhu & Jie Gao & Chen Chen & Samson S. Yu & Zenghai Zhao, 2025. "Long-Term Stochastic Co-Scheduling of Hydro–Wind–PV Systems Using Enhanced Evolutionary Multi-Objective Optimization," Sustainability, MDPI, vol. 17(5), pages 1-34, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:1896-:d:1630588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.