IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3525-d1694317.html
   My bibliography  Save this article

Energy Efficiency Assessment of Electric Bicycles

Author

Listed:
  • Tomasz Matyja

    (Department of Road Transport, Faculty of Transport and Aviation Engineering, Silesian University of Technology, 8 Krasinskiego Street, 40-019 Katowice, Poland)

  • Zbigniew Stanik

    (Department of Road Transport, Faculty of Transport and Aviation Engineering, Silesian University of Technology, 8 Krasinskiego Street, 40-019 Katowice, Poland)

  • Andrzej Kubik

    (Department of Road Transport, Faculty of Transport and Aviation Engineering, Silesian University of Technology, 8 Krasinskiego Street, 40-019 Katowice, Poland)

Abstract

Electric-assist bicycles have recently become very popular. However, riding them generally requires significantly more energy, generated simultaneously by the motor and the rider, compared to much lighter traditional bicycles. Assessing the energy efficiency of electric-assist bicycles in comparison to traditional bikes allows us to determine in which cases using electric bikes is cost-effective and in which it is not. This study proposes a method for evaluating the energy efficiency of bicycles, which stands out by relying on relatively imprecise data recorded at low frequency by a commercial bike computer with accessories. The core of the method is an algorithm developed by the authors to determine the tractive force acting on the bicycle and rider, based on a minimal set of recorded data: road incline, riding speed, and the wind speed component parallel to the direction of movement. Depending on the situation, the tractive force may act as a driving force or as a braking force. Based on the calculated tractive force, the power required to maintain the recorded bicycle speed can be estimated.

Suggested Citation

  • Tomasz Matyja & Zbigniew Stanik & Andrzej Kubik, 2025. "Energy Efficiency Assessment of Electric Bicycles," Energies, MDPI, vol. 18(13), pages 1-28, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3525-:d:1694317
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3525/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3525/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pedro Forte & Daniel A. Marinho & Pantelis T. Nikolaidis & Beat Knechtle & Tiago M. Barbosa & Jorge E. Morais, 2020. "Analysis of Cyclist’s Drag on the Aero Position Using Numerical Simulations and Analytical Procedures: A Case Study," IJERPH, MDPI, vol. 17(10), pages 1-9, May.
    2. Ba Hung, Nguyen & Lim, Ocktaeck, 2019. "The effects of operating conditions and structural parameters on the dynamic, electric consumption and power generation characteristics of an electric assisted bicycle," Applied Energy, Elsevier, vol. 247(C), pages 285-296.
    3. Dorina Pojani & Dominic Stead, 2015. "Sustainable Urban Transport in the Developing World: Beyond Megacities," Sustainability, MDPI, vol. 7(6), pages 1-22, June.
    4. Tomasz Matyja & Andrzej Kubik & Zbigniew Stanik, 2022. "Possibility to Use Professional Bicycle Computers for the Scientific Evaluation of Electric Bikes: Trajectory, Distance, and Slope Data," Energies, MDPI, vol. 15(3), pages 1-18, January.
    5. Fiori, Chiara & Ahn, Kyoungho & Rakha, Hesham A., 2016. "Power-based electric vehicle energy consumption model: Model development and validation," Applied Energy, Elsevier, vol. 168(C), pages 257-268.
    6. Zhai, Xiangyu & Li, Zening & Li, Zhengmao & Xue, Yixun & Chang, Xinyue & Su, Jia & Jin, Xiaolong & Wang, Peng & Sun, Hongbin, 2025. "Risk-averse energy management for integrated electricity and heat systems considering building heating vertical imbalance: An asynchronous decentralized approach," Applied Energy, Elsevier, vol. 383(C).
    7. Tomasz Matyja & Andrzej Kubik & Zbigniew Stanik, 2022. "Possibility to Use Professional Bicycle Computers for the Scientific Evaluation of Electric Bikes: Velocity, Cadence and Power Data," Energies, MDPI, vol. 15(3), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katarzyna Turoń & Andrzej Kubik & Feng Chen, 2022. "What Car for Car-Sharing? Conventional, Electric, Hybrid or Hydrogen Fleet? Analysis of the Vehicle Selection Criteria for Car-Sharing Systems," Energies, MDPI, vol. 15(12), pages 1-14, June.
    2. Andrzej Kubik, 2022. "The Energy Consumption of Electric Scooters Used in the Polish Shared Mobility Market," Energies, MDPI, vol. 15(21), pages 1-15, November.
    3. Piotr Kędziorek & Zbigniew Kasprzyk & Mariusz Rychlicki & Adam Rosiński, 2023. "Analysis and Evaluation of Methods Used in Measuring the Intensity of Bicycle Traffic," Energies, MDPI, vol. 16(2), pages 1-18, January.
    4. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    5. Caixin Yan & Zhifeng Qiu, 2025. "Review of Power Market Optimization Strategies Based on Industrial Load Flexibility," Energies, MDPI, vol. 18(7), pages 1-41, March.
    6. Yashraj Tripathy & Andrew McGordon & Anup Barai, 2020. "Improving Accessible Capacity Tracking at Low Ambient Temperatures for Range Estimation of Battery Electric Vehicles," Energies, MDPI, vol. 13(8), pages 1-18, April.
    7. K. S. Reddy & S. Aravindhan & Tapas K. Mallick, 2017. "Techno-Economic Investigation of Solar Powered Electric Auto-Rickshaw for a Sustainable Transport System," Energies, MDPI, vol. 10(6), pages 1-15, May.
    8. David Staš & Radim Lenort & Pavel Wicher & David Holman, 2015. "Green Transport Balanced Scorecard Model with Analytic Network Process Support," Sustainability, MDPI, vol. 7(11), pages 1-19, November.
    9. Majumder, Suman & De, Krishnarti & Kumar, Praveen & Sengupta, Bodhisattva & Biswas, Pabitra Kumar, 2021. "Techno-commercial analysis of sustainable E-bus-based public transit systems: An Indian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    10. Stefano De Pinto & Pablo Camocardi & Christoforos Chatzikomis & Aldo Sorniotti & Francesco Bottiglione & Giacomo Mantriota & Pietro Perlo, 2020. "On the Comparison of 2- and 4-Wheel-Drive Electric Vehicle Layouts with Central Motors and Single- and 2-Speed Transmission Systems," Energies, MDPI, vol. 13(13), pages 1-24, June.
    11. Nan, Sirui & Tu, Ran & Li, Tiezhu & Sun, Jian & Chen, Haibo, 2022. "From driving behavior to energy consumption: A novel method to predict the energy consumption of electric bus," Energy, Elsevier, vol. 261(PA).
    12. Bayissa Badada Badassa & Baiqing Sun & Lixin Qiao, 2020. "Sustainable Transport Infrastructure and Economic Returns: A Bibliometric and Visualization Analysis," Sustainability, MDPI, vol. 12(5), pages 1-24, March.
    13. Ali Enes Dingil & Federico Rupi & Domokos Esztergár-Kiss, 2021. "An Integrative Review of Socio-Technical Factors Influencing Travel Decision-Making and Urban Transport Performance," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    14. Clara Moreira Senne & Josiane Palma Lima & Fábio Favaretto, 2021. "An Index for the Sustainability of Integrated Urban Transport and Logistics: The Case Study of São Paulo," Sustainability, MDPI, vol. 13(21), pages 1-18, November.
    15. Noah Kaiser & Christina K. Barstow, 2022. "Rural Transportation Infrastructure in Low- and Middle-Income Countries: A Review of Impacts, Implications, and Interventions," Sustainability, MDPI, vol. 14(4), pages 1-48, February.
    16. Rogier Pennings & Bart Wiegmans & Tejo Spit, 2020. "Can We Have Our Cake and Still Eat It? A Review of Flexibility in the Structural Spatial Development and Passenger Transport Relation in Developing Countries," Sustainability, MDPI, vol. 12(15), pages 1-25, July.
    17. Huang, Hai-chao & He, Hong-di & Peng, Zhong-ren, 2024. "Urban-scale estimation model of carbon emissions for ride-hailing electric vehicles during operational phase," Energy, Elsevier, vol. 293(C).
    18. Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.
    19. Feng, Zhanyu & Zhang, Jian & Jiang, Han & Yao, Xuejian & Qian, Yu & Zhang, Haiyan, 2024. "Energy consumption prediction strategy for electric vehicle based on LSTM-transformer framework," Energy, Elsevier, vol. 302(C).
    20. Rohit Sharma, 2018. "Financing Indian Urban Rail through Land Development: Case Studies and Implications for the Accelerated Reduction in Oil Associated with 1.5 °C," Urban Planning, Cogitatio Press, vol. 3(2), pages 21-34.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3525-:d:1694317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.