IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1807-d1627736.html
   My bibliography  Save this article

Study of the Greenhouse Gas Emissions from Electric Buses Powered by Renewable Energy Sources in Poland

Author

Listed:
  • Piotr Folęga

    (Department of Road Transport, Faculty of Transport and Aviation Engineering, Silesian University of Technology, 8 Krasinskiego Street, 40-019 Katowice, Poland)

  • Dorota Burchart

    (Department of Road Transport, Faculty of Transport and Aviation Engineering, Silesian University of Technology, 8 Krasinskiego Street, 40-019 Katowice, Poland)

Abstract

The subject addressed in this article is the application of the life cycle assessment (LCA) method for studying the greenhouse gas emissions attributable to public bus transport. The article provides a discussion on the results of the authors’ in-house study on the greenhouse gas (GHG) emissions generated over the life cycle of the buses used in Poland’s public transport with the use of well-to-wheel (WTW) fuel life cycle analysis. The project started by adopting the methodology and assumptions for the research; next, the data required to perform the relevant analyses were collected and the greenhouse gas emissions attributable to the operation of buses equipped with both diesel fuel (DF) internal combustion engines and electric engines (BEVs) were assessed against real-life data using a selected Polish municipal transport company as an example in 2022. The study also included an assessment of GHG emissions from electric buses powered by renewable energy sources (RESs), using data from the chosen municipal transport company. For the RES fractions of 25%, 50%, and 75% in the energy mix, emission reductions of approx. 19%, 38%, and 57% have been achieved, respectively. For an energy mix entirely derived from RESs, the reduction in emissions comes to ca. 76% vis-à-vis Poland’s energy mix in 2022.

Suggested Citation

  • Piotr Folęga & Dorota Burchart, 2025. "Study of the Greenhouse Gas Emissions from Electric Buses Powered by Renewable Energy Sources in Poland," Energies, MDPI, vol. 18(7), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1807-:d:1627736
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1807/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1807/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ryuji Kawamoto & Hideo Mochizuki & Yoshihisa Moriguchi & Takahiro Nakano & Masayuki Motohashi & Yuji Sakai & Atsushi Inaba, 2019. "Estimation of CO 2 Emissions of Internal Combustion Engine Vehicle and Battery Electric Vehicle Using LCA," Sustainability, MDPI, vol. 11(9), pages 1-15, May.
    2. Correa, G. & Muñoz, P.M. & Rodriguez, C.R., 2019. "A comparative energy and environmental analysis of a diesel, hybrid, hydrogen and electric urban bus," Energy, Elsevier, vol. 187(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Hai-chao & He, Hong-di & Peng, Zhong-ren, 2024. "Urban-scale estimation model of carbon emissions for ride-hailing electric vehicles during operational phase," Energy, Elsevier, vol. 293(C).
    2. Li, Jingjing & Nian, Victor & Jiao, Jianling, 2022. "Diffusion and benefits evaluation of electric vehicles under policy interventions based on a multiagent system dynamics model," Applied Energy, Elsevier, vol. 309(C).
    3. Zacharopoulos, Leon & Thonemann, Nils & Dumeier, Marcel & Geldermann, Jutta, 2023. "Environmental optimization of the charge of battery electric vehicles," Applied Energy, Elsevier, vol. 329(C).
    4. Fabio Orecchini & Adriano Santiangeli & Fabrizio Zuccari & Adriano Alessandrini & Fabio Cignini & Fernando Ortenzi, 2021. "Real Drive Truth Test of the Toyota Yaris Hybrid 2020 and Energy Analysis Comparison with the 2017 Model," Energies, MDPI, vol. 14(23), pages 1-22, December.
    5. Stephanus Erasmus & Jacques Maritz, 2023. "A Carbon Reduction and Waste Heat Utilization Strategy for Generators in Scalable PV—Diesel Generator Campus Microgrids," Energies, MDPI, vol. 16(18), pages 1-12, September.
    6. Gnap Jozef & Dočkalik Marek & Dydkowski Grzegorz, 2021. "Examination of the Development of New Bus Registrations with Alternative Powertrains in Europe," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 12(1), pages 147-158, January.
    7. Buberger, Johannes & Kersten, Anton & Kuder, Manuel & Eckerle, Richard & Weyh, Thomas & Thiringer, Torbjörn, 2022. "Total CO2-equivalent life-cycle emissions from commercially available passenger cars," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Kaname Naganuma & Yuhei Sakane, 2023. "Examining Real-Road Fuel Consumption Performance of Hydrogen-Fueled Series Hybrid Vehicles," Energies, MDPI, vol. 16(20), pages 1-11, October.
    9. Wu, Xiaomei & Feng, Qijin & Bai, Chenchen & Lai, Chun Sing & Jia, Youwei & Lai, Loi Lei, 2021. "A novel fast-charging stations locational planning model for electric bus transit system," Energy, Elsevier, vol. 224(C).
    10. Nora Schelte & Semih Severengiz & Jaron Schünemann & Sebastian Finke & Oskar Bauer & Matthias Metzen, 2021. "Life Cycle Assessment on Electric Moped Scooter Sharing," Sustainability, MDPI, vol. 13(15), pages 1-20, July.
    11. Jemima Romola, C.V. & Karl J Samuel, P.K. & Megana Harshini, M. & Ganesh Moorthy, I. & Shyam Kumar, R. & Chinnathambi, Arunachalam & Salmen, Saleh H. & Alharbi, Sulaiman Ali & Karthikumar, Sankar, 2021. "Improvement of fuel properties of used palm oil derived biodiesel with butyl ferulate as an additive," Renewable Energy, Elsevier, vol. 175(C), pages 1052-1068.
    12. Gábor Horváth & Attila Bai & Sándor Szegedi & István Lázár & Csongor Máthé & László Huzsvai & Máté Zakar & Zoltán Gabnai & Tamás Tóth, 2023. "A Comprehensive Review of the Distinctive Tendencies of the Diffusion of E-Mobility in Central Europe," Energies, MDPI, vol. 16(14), pages 1-29, July.
    13. Shao, Shuai & Tan, Zhijia & Liu, Zhiyuan & Shang, Wenlong, 2022. "Balancing the GHG emissions and operational costs for a mixed fleet of electric buses and diesel buses," Applied Energy, Elsevier, vol. 328(C).
    14. Peng, Zhenhan & Wang, Zhuowei & Wang, Shiqi & Chen, Anthony & Zhuge, Chengxiang, 2024. "Fuel and infrastructure options for electrifying public transit: A data-driven micro-simulation approach," Applied Energy, Elsevier, vol. 369(C).
    15. Faridpak, Behdad & Farrokhifar, Meisam & Murzakhanov, Ilgiz & Safari, Amin, 2020. "A series multi-step approach for operation Co-optimization of integrated power and natural gas systems," Energy, Elsevier, vol. 204(C).
    16. Vera Marcantonio & Marcello De Falco & Enrico Bocci, 2022. "Non-Thermal Plasma Technology for CO 2 Conversion—An Overview of the Most Relevant Experimental Results and Kinetic Models," Energies, MDPI, vol. 15(20), pages 1-18, October.
    17. Ajanovic, A. & Glatt, A. & Haas, R., 2021. "Prospects and impediments for hydrogen fuel cell buses," Energy, Elsevier, vol. 235(C).
    18. Hsieh, Chuang-Yu & Pei, Pucheng & Bai, Qiang & Su, Ay & Weng, Fang-Bor & Lee, Chi-Yuan, 2021. "Results of a 200 hours lifetime test of a 7 kW Hybrid–Power fuel cell system on electric forklifts," Energy, Elsevier, vol. 214(C).
    19. Alcázar-García, Désirée & Romeral Martínez, José Luis, 2022. "Model-based design validation and optimization of drive systems in electric, hybrid, plug-in hybrid and fuel cell vehicles," Energy, Elsevier, vol. 254(PA).
    20. Md Junaed Al Hossain & Md. Zakir Hasan & Md Hasanuzzaman & Md. Ziaur Rahman Khan & Mohammad Ahsan Habib, 2022. "Affordable Electric Three-Wheeler in Bangladesh: Prospects, Challenges, and Sustainable Solutions," Sustainability, MDPI, vol. 15(1), pages 1-26, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1807-:d:1627736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.